< 日本大学理工学部・教養ゼミナール >
大学で数学を教えていても,学生は問題の解法のみに興味が集中し 「問題解法の一つを暗記することが数学の学習」 という"信仰" から脱皮できないでいます。
情報化社会に移行した今, パソコンも進化し,Mathematica など,パソコンソフトの アニメーション技術も驚くほど向上し,波の現象や,熱の拡散現象を含む 多くの自然現象を,それらしく見せることが容易になりました。また, 数学の教科書にかいてある数学の概念や定理についても, 工夫すれば,イメージ化して学ぶことが可能です。特に, 微小な量を扱う微分や積分の考え方そのものまで パソコンの画面上でイメージ化できるようになりました。
黒板とチョークの授業では,説明できなかった 数学現象もこの目で確かめることも可能になり,その本質に触れることで 感動すら覚えることもあります。
また,大学で学生が練習している計算のほとんどは 1 秒以内に正解を出してくれます。
情報化社会のなかでは,問題の解法を暗記するよりも
数学の概念を理解したり,数学的な考え方を身につけることが
ますます重要になってきています。
残念ながら,微分積分学は,理工系の学生にとっては重要な科目
ですが,微分積分学で学ぶ微分や積分など多くの考え方は,
極限の概念として定義されるので,
容易に理解できない人は飛ばしてしまう傾向にあります。
この授業の視点は,ソフト Mathematica を利用し,グラフィカルに支援することで, 三角関数の和をグラフィカルに理解し, フーリエ級数展開への可能性を感得する。また,アニメーション効果で 三角関数の公式を波の動きに関連付けて 理解したり, 導関数の役割や積分の概念をグラフィカルにイメージ化して より深く理解していこうというものです。
また,パソコンソフト Mathematica は工学系の学生にとっては, 非常に便利な道具の一つであり,卒業研究や修士論文の作成に大変 威力を発揮します。 この授業では,Mathematica の使い方(とくにプログラミングの初歩)も 同時に身に付けていきます。
具体的には,数学の公式や概念を理解するために, 内容をステップにきざんでプログラム化します。 そのプログラムを実際にパソコンソフト Mathematica 上に書かせて,それを実行させながら学習していきます。 グラフィカルに イメージ化されるのでさらなる理解の深まりを期待します。
短いプログラムの操作とグラフ
の両方を通し、
理解を深めます.
また,平成20年度より
新しいタイプの数学力の育成を目指しています。
1 Mathematica を使ってみる
(これらは PDFファイルになっていますので Adobe Reader で見ることができます)
CDF Player がインストールされていることが必要です.
ダウンロードは無料で,こちらから可能です