(* Content-type: application/mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 6.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 145, 7] NotebookDataLength[ 131093, 4141] NotebookOptionsPosition[ 111157, 3743] NotebookOutlinePosition[ 127768, 4040] CellTagsIndexPosition[ 127725, 4037] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell[TextData[StyleBox["\:4e09\:89d2\:95a2\:6570\:306e\:4e0d\:601d\:8b70", FontColor->RGBColor[1, 0, 1]]], "Title", CellChangeTimes->{{3.426558768171875*^9, 3.42655876875*^9}, { 3.494650740734375*^9, 3.49465075215625*^9}}], Cell[TextData[{ StyleBox["\:306a\:305c\:3067\:3057\:3087\:3046\:ff1f", FontSize->36], "\n", StyleBox["\:79c1\:305f\:3061\:306f\:ff0c\:4e09\:89d2\:95a2\:6570\:306b\:3064\ \:3044\:3066\:3001\:9ad8\:7b49\:5b66\:6821\:306e\:65e9\:3044\:6642\:671f\:304b\ \:3089\:52c9\:5f37\:3057\:307e\:3059\:3002\:3069\:3046\:3057\:3066\:ff0csin x \ \:3084 cos x \:3092\:52c9\:5f37\:3059\:308b\:306e\:3067\:3057\:3087\:3046\ \:304b\:3002\:3053\:3093\:306a\:7591\:554f\:306b\:ff0c\:30d1\:30bd\:30b3\:30f3\ \:3092\:5229\:7528\:3057\:3066\:89e3\:7b54\:3057\:3066\:898b\:305f\:3044\:3068\ \:601d\:3044\:307e\:3059\:ff0e\n", FontSize->18], StyleBox["\:3053\:3053\:3067\:306f\:ff0c\:6570\:5f0f\:51e6\:7406\:30bd\:30d5\ \:30c8 Mathematica \:3092\:5229\:7528\:3057\:3066\:4e09\:89d2\:95a2\:6570\ \:306e\:30b0\:30e9\:30d5\:3092\:898b\:306a\:304c\:3089\:3001\:4e09\:89d2\:95a2\ \:6570\:304c\:6301\:3064\:4e0d\:601d\:8b70\:306a\:6027\:8cea\:3092\:660e\:3089\ \:304b\:306b\:3057\:3066\:3044\:304d\:307e\:3059\:3002", FontSize->16], StyleBox["\n", FontSize->18], StyleBox["\:5b66\:3073\:65b9\:ff1a\:6700\:521d\:306e\:4e09\:89d2\:30dc\:30bf\ \:30f3\:3092\:30af\:30ea\:30c3\:30af\:3057\:3066\:ff0c\:4e0b\:5411\:304d\:306b\ \:3059\:308b\:3068\:ff0c\:5185\:5bb9\:304c\:8868\:793a\:3055\:308c\:307e\:3059\ \:ff0e", FontSize->16, FontWeight->"Bold", FontColor->RGBColor[1., 0.5019607843137255, 0.5019607843137255]], StyleBox[" ", FontSize->18] }], "Text", CellChangeTimes->{{3.494650791484375*^9, 3.49465084509375*^9}, { 3.49465087840625*^9, 3.494650879796875*^9}, 3.49465092628125*^9, { 3.494654128578125*^9, 3.494654131578125*^9}, {3.494654360109375*^9, 3.49465436840625*^9}}, Background->RGBColor[ 0.8313725490196079, 0.8313725490196079, 0.8313725490196079]], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["\:4e09\:89d2\:95a2\:6570 ", FontSize->24, FontWeight->"Bold"], Cell[BoxData[ RowBox[{"sin", " ", "x"}]], FontSize->24, FontWeight->"Bold"], StyleBox[" \:3068", FontSize->24, FontWeight->"Bold"], Cell[BoxData[ RowBox[{"cos", " ", "x"}]], FontSize->24, FontWeight->"Bold"], StyleBox[" \:306e\:548c\:306e\:30b0\:30e9\:30d5", FontSize->24, FontWeight->"Bold"] }], "Section", CellChangeTimes->{3.494655113*^9}, Background->RGBColor[0.41568627450980394`, 1., 1.]], Cell[TextData[{ "\:ff08\:ff11\:ff09\:3000", Cell[BoxData[ RowBox[{"sin", " ", "x"}]]], " \:3068", Cell[BoxData[ RowBox[{"cos", " ", "x"}]]], " \:306e\:30b0\:30e9\:30d5\:3092\:305d\:308c\:305e\:308c\:8d64\:3068\:9752\ \:3067\:63cf\:304d\:307e\:3059\:ff0e" }], "Text", FontSize->18], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .31831 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.151576 0.159155 0.151576 [ [.02381 .14665 -8.34375 -12.875 ] [.02381 .14665 8.34375 0 ] [.2619 .14665 -11.4375 -18.9375 ] [.2619 .14665 11.4375 0 ] [.7381 .14665 -8.125 -18.9375 ] [.7381 .14665 8.125 0 ] [.97619 .14665 -5.03125 -12.875 ] [.97619 .14665 5.03125 0 ] [.4875 .00758 -12 -4.5 ] [.4875 .00758 0 4.5 ] [.4875 .31073 -6 -4.5 ] [.4875 .31073 0 4.5 ] [ 0 0 0 0 ] [ 1 .31831 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash .02381 .15915 m .02381 .1654 L s gsave .02381 .14665 -69.3438 -16.875 Mabsadd m 1 1 Mabs scale currentpoint translate 0 20.875 translate 1 -1 scale /g { setgray} bind def /k { setcmykcolor} bind def /p { gsave} bind def /r { setrgbcolor} bind def /w { setlinewidth} bind def /C { curveto} bind def /F { fill} bind def /L { lineto} bind def /rL { rlineto} bind def /P { grestore} bind def /s { stroke} bind def /S { show} bind def /N {currentpoint 3 -1 roll show moveto} bind def /Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def /m { moveto} bind def /Mr { rmoveto} bind def /Mx {currentpoint exch pop moveto} bind def /My {currentpoint pop exch moveto} bind def /X {0 rmoveto} bind def /Y {0 exch rmoveto} bind def /MISOfy { /newfontname exch def /oldfontname exch def oldfontname findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse} forall /Encoding WindowsANSIEncoding def currentdict end newfontname exch definefont pop } def 63.000 13.000 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (-) show 69.625 13.000 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (p) show 1.000 setlinewidth grestore .2619 .15915 m .2619 .1654 L s gsave .2619 .14665 -72.4375 -22.9375 Mabsadd m 1 1 Mabs scale currentpoint translate 0 26.9375 translate 1 -1 scale /g { setgray} bind def /k { setcmykcolor} bind def /p { gsave} bind def /r { setrgbcolor} bind def /w { setlinewidth} bind def /C { curveto} bind def /F { fill} bind def /L { lineto} bind def /rL { rlineto} bind def /P { grestore} bind def /s { stroke} bind def /S { show} bind def /N {currentpoint 3 -1 roll show moveto} bind def /Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def /m { moveto} bind def /Mr { rmoveto} bind def /Mx {currentpoint exch pop moveto} bind def /My {currentpoint pop exch moveto} bind def /X {0 rmoveto} bind def /Y {0 exch rmoveto} bind def /MISOfy { /newfontname exch def /oldfontname exch def oldfontname findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse} forall /Encoding WindowsANSIEncoding def currentdict end newfontname exch definefont pop } def 63.000 15.375 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (-) show 72.688 9.313 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (p) show 71.375 15.375 moveto (\\200\\200) show 75.625 15.375 moveto (\\200) show 77.750 15.375 moveto (\\200) show 72.750 21.938 moveto %%IncludeResource: font Courier %%IncludeFont: Courier %%BeginResource: font Courier-MISO %%BeginFont: Courier-MISO /Courier /Courier-MISO MISOfy %%EndFont %%EndResource %%IncludeResource: font Courier-MISO %%IncludeFont: Courier-MISO /Courier-MISO findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (2) show 1.000 setlinewidth grestore .7381 .15915 m .7381 .1654 L s gsave .7381 .14665 -69.125 -22.9375 Mabsadd m 1 1 Mabs scale currentpoint translate 0 26.9375 translate 1 -1 scale /g { setgray} bind def /k { setcmykcolor} bind def /p { gsave} bind def /r { setrgbcolor} bind def /w { setlinewidth} bind def /C { curveto} bind def /F { fill} bind def /L { lineto} bind def /rL { rlineto} bind def /P { grestore} bind def /s { stroke} bind def /S { show} bind def /N {currentpoint 3 -1 roll show moveto} bind def /Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def /m { moveto} bind def /Mr { rmoveto} bind def /Mx {currentpoint exch pop moveto} bind def /My {currentpoint pop exch moveto} bind def /X {0 rmoveto} bind def /Y {0 exch rmoveto} bind def /MISOfy { /newfontname exch def /oldfontname exch def oldfontname findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse} forall /Encoding WindowsANSIEncoding def currentdict end newfontname exch definefont pop } def 66.063 9.313 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (p) show 64.750 15.375 moveto (\\200\\200) show 69.000 15.375 moveto (\\200) show 71.125 15.375 moveto (\\200) show 66.125 21.938 moveto %%IncludeResource: font Courier %%IncludeFont: Courier %%BeginResource: font Courier-MISO %%BeginFont: Courier-MISO /Courier /Courier-MISO MISOfy %%EndFont %%EndResource %%IncludeResource: font Courier-MISO %%IncludeFont: Courier-MISO /Courier-MISO findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (2) show 1.000 setlinewidth grestore .97619 .15915 m .97619 .1654 L s gsave .97619 .14665 -66.0313 -16.875 Mabsadd m 1 1 Mabs scale currentpoint translate 0 20.875 translate 1 -1 scale /g { setgray} bind def /k { setcmykcolor} bind def /p { gsave} bind def /r { setrgbcolor} bind def /w { setlinewidth} bind def /C { curveto} bind def /F { fill} bind def /L { lineto} bind def /rL { rlineto} bind def /P { grestore} bind def /s { stroke} bind def /S { show} bind def /N {currentpoint 3 -1 roll show moveto} bind def /Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def /m { moveto} bind def /Mr { rmoveto} bind def /Mx {currentpoint exch pop moveto} bind def /My {currentpoint pop exch moveto} bind def /X {0 rmoveto} bind def /Y {0 exch rmoveto} bind def /MISOfy { /newfontname exch def /oldfontname exch def oldfontname findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse} forall /Encoding WindowsANSIEncoding def currentdict end newfontname exch definefont pop } def 63.000 13.000 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (p) show 1.000 setlinewidth grestore 0 .15915 m 1 .15915 L s .5 .00758 m .50625 .00758 L s [(-1)] .4875 .00758 1 0 Mshowa .5 .31073 m .50625 .31073 L s [(1)] .4875 .31073 1 0 Mshowa .5 0 m .5 .31831 L s 0 0 m 1 0 L 1 .31831 L 0 .31831 L closepath clip newpath 1 0 0 r .5 Mabswid .02381 .15915 m .06244 .12094 L .10458 .08215 L .14415 .05106 L .18221 .02805 L .20178 .01935 L .21267 .01551 L .22272 .01262 L .23293 .01034 L .23832 .00941 L .24402 .00863 L .24641 .00837 L .24897 .00813 L .25119 .00796 L .25361 .00781 L .25507 .00773 L .25643 .00768 L .25773 .00764 L .2584 .00762 L .25912 .0076 L .25983 .00759 L .26048 .00759 L .26176 .00758 L .26293 .00758 L .26416 .0076 L .26538 .00762 L .26607 .00764 L .26671 .00765 L .26912 .00775 L .27131 .00787 L .27364 .00803 L .27847 .00848 L .2838 .00916 L .29326 .01081 L .30213 .01289 L .32232 .01946 L .34082 .02766 L .38045 .05162 L .41855 .08157 L .45911 .11876 L .49816 .15732 L .53966 .19836 L .57964 .23518 L .61811 .26567 L .63759 .27861 L .65902 .29057 L .67938 .2995 L .69843 .30557 L .70884 .30792 L .71396 .30881 L Mistroke .71872 .30949 L .72301 .30998 L .72758 .31037 L .7302 .31053 L .73148 .31059 L .73266 .31063 L .73371 .31067 L .73487 .3107 L .73603 .31072 L .73725 .31073 L .73856 .31073 L .73977 .31072 L .7404 .31071 L .7411 .3107 L .74251 .31067 L .74375 .31063 L .74508 .31057 L .74748 .31044 L .74985 .31028 L .75235 .31006 L .7568 .30958 L .76198 .30885 L .7668 .30802 L .77773 .30558 L .78828 .3025 L .79823 .29896 L .81683 .29074 L .85534 .2676 L .89632 .23538 L .93577 .1991 L .97371 .16164 L .97619 .15915 L Mfstroke 0 .4 1 r .02381 .00758 m .02499 .00758 L .02605 .0076 L .02729 .00762 L .02846 .00765 L .03053 .00773 L .03279 .00784 L .03527 .00801 L .0379 .00823 L .04262 .00874 L .04749 .00942 L .05205 .0102 L .06244 .01248 L .07305 .01551 L .08274 .01889 L .10458 .02859 L .14429 .05299 L .18248 .08332 L .22313 .1208 L .26226 .15951 L .30384 .20056 L .34391 .23721 L .38246 .26739 L .402 .28014 L .42346 .29181 L .44388 .30046 L .45301 .30351 L .46295 .30622 L .46838 .30744 L .4734 .3084 L .4781 .30915 L .4833 .30981 L .48553 .31004 L .48794 .31025 L .49002 .3104 L .4923 .31054 L .49473 .31064 L .49605 .31068 L .49728 .31071 L .49844 .31072 L .49949 .31073 L .50071 .31073 L .50186 .31072 L .50301 .3107 L .50425 .31067 L .50542 .31063 L .50648 .31059 L .5091 .31046 L .51158 .31029 L .5165 .30983 L Mistroke .52187 .30916 L .53144 .30748 L .54032 .3054 L .56088 .29867 L .5795 .29035 L .61962 .26593 L .65822 .23538 L .69928 .19755 L .73882 .15843 L .77684 .12083 L .81732 .08349 L .85628 .05259 L .87613 .03942 L .89769 .02745 L .91843 .01845 L .92832 .01508 L .93759 .01247 L .94643 .01049 L .95595 .00893 L .9611 .00833 L .96369 .00809 L .96652 .00789 L .96894 .00775 L .9703 .00769 L .97153 .00765 L .97268 .00762 L .97393 .0076 L .97511 .00758 L .97619 .00758 L Mfstroke % End of Graphics MathPictureEnd \ \>"], "Text", CellFrame->True, ImageSize->{338.688, 107.75}, ImageMargins->{{274, 0}, {0, 8}}, ImageRegion->{{0, 1}, {0, 1}}, Background->GrayLevel[0.833326], ImageCache->GraphicsData["CompressedBitmap", "\<\ eJydmltTHUUQx5fD/RIghgOBBDgEEu4J4Z6EAOEaiNEyMV6eFJEjGDGRoPEe NVYsLctSy7LKKh/UB1/9NHye4870nD57lt+S0a060DXT/f/3zM7O9nTvzY39 7a3djf2dzY3M6t7G/e2dzQeZlXt7YVNpSRCU3AqC4G4mMHIuFN2fXHBwcHDb /DEtBfkP86/cqJTZhlIjWsn8/halv6DrCPUG868iCLK5RSNVGxeuJUHYpp/U okEg0s6tbG5aukKIaiNVGmnUSGVJTlPb94qXFoI2B5HNjYgUwjaLP6E05Qn7 rRtBNtcmsB3aMKBg7SqNGSllACoA7InatgtYlzb0KES3QITSJYB4rBYZgehx jK7BGvapRMP8Ui26BeKcNpxWwyGVJgDikVqcFYg+bTiphiMqjQHEZ2rRKxAD 2tCkhuMqXQSIT9SiXyCGtKFRDadVugAQH6nFoECczytlc6pU59pyEcPLCjsM sA8VVnqF2zbUqOGcSoMA8QE44sAuQle5gi2q1A+w++rIiICNakOpGq6q1AsQ D4DegY0rWGy61mAKewD7PQWQNaOrz+5xjvAGgHUD2H1w1MGO6QhToLQOBGeA 4B7YjkemNQZRmkRlHSGCXZ2OqeJbH4UtV6VnobcTYN8BR6aKFmqIUOM5MR1A cBdsp4sfsChErSdVO1Dt6OivCMEwGB7zJDgNBNtg66gGdbKOH3lrCfYtsJgR 2AHw7Jkjb3IrEGypxZzA9oNh2nNiTgLBm2DrqPoAosWTqgWoNsF2Xqh6AaLV k6oZqN4AWwlt5D0ZgzjlSZUGqg2wXRCqs0et/oi6hbVxEu0MTUC6qhZ07xeF vgfAOkGdCMbA9kSSI7E2cmlJXOoG2K7/4pJ9EsmR69B2ApCXxZEz4IiL2TT4 LAYbB4tG0FuDtkZFFjd1zFGwc+CtEJQVgYXXJJg3JN6dQ+aNwOQcywByX5Jj NkSeBov6pBuUSqKXWdPlGQUbAHV6OI8B6auJtvrGi0IMeVLVAdUrYCsxjj7z UQgKUW0UUzgvVSVNby3QL6sFvfLldYNrJAVt5UA64jk3NYD3Ethe9vRFBiuw dm5SvKgrwZdRT5+rgfcO2M4wtSz3Qvjges1VAWzjnl5VgVcvgu0s8B7hEt3c SU+XKsGl22A7l+ySffptJqMUCKYBjA7htFJmAI9sVzzxypIGZr2X7UYDnUPH ShzEoaUzD+bl4EvCTl4BTLek077D7OtyVqRQJ377zHUNPKAcSvwFG11KUXqX sGoC2HlQj1OZawFsSz1dopsmD42GA1HYBVBP6T0mR2ilrKoFHURlJ5HgPwa2 BOprbhFE9fKjex70ZXPVRz1qtpIIX1akF17PgerL0tkIyNcTkQt65roJevKm lL3EvrGcTf5ad23GJn+tgd4NT70K80eWPr4B1yNteT9p81t7ypjzmPV+VFYp hIq25emi05vXpel1adjXwLN4ZG7MVp8ygnyb3PHgdVBfccsnOqrQdNkTWVYp HpqW3bqPIucdX/SEl2cMj3/6qMGzHIWY86SS3QQPtYtARS+7q55UspfiUX0B qMoA4oonVVqotkCdSgMUS1zypGp2TwCozwMVRVJTnlTyksZsTTxSMT8KJSc8 qSTHgvmmeJxmflUAMeZJJQkSyZ3F1K8CVTVAUBKaqFzZ5G1QnwGqGoC44Ekl uRhMPl4BqlqAGPakkoweJlLpdEIVhEFPKlcq2gV1KhAdA4h+Tyo52Abvgvo0 UNUDRK8nlRzXJYNuA0wiaJDenMuHWb14wlxKBjHGCQCjKIcSSOSto9oD9XGg oniN0mdE5WpyVGShMhpFppQoTC7ASEkopj4KVBSXU/qTqFyZ8H1Qp8peGiAo qUtUkgzD+tkIUDUDBKWqicpVLh+COhUbW3TpNnsSSP4s+FBXP8G2guFxeF5c hfNj4B4C2DY1TM660Y4mZdmYOlU4TwNEnSeVOBx8qsMkAkqeVcPEyKQGnwN3 H8B2qGGVp7eO4BGoU4E1AxB0OCUqV4j9QodJBF06ghRMhyuRfgWMVLKNJuaP OgM52McAS8Xb7oheHoYG7OqtX+tACKxLeyluX9ahuyLoE/AxA7CdClsovy8B gYP9RtUJrF17KdyaUwKJL+TDlJiPVB89pbB1CjELBA72O1UnsFbtbSz2x0oS OsqXOFbpFEC0aG/hM48p8MeB/aDqVOOkfbTwjc+oEsipIPhRwajI2KS9hc9g zqvkCnM/q1IaIApV2owa9qs/rpL1iypRNapB1INDnwRZSY7hwa+qRHWkOu2l T5RcEeM3VbJbS+IHYtWqN6IQdoptHkiSNMHv5l+lUaKsaZ4gm5tUw3qVXhCI 6BdoNncR/mrNX7vy643mncOaRRSxtv/3aduf7u4EwT/SYFeWS00GJf8C5uUL IA==\ \>"], ImageRangeCache->{{{0, 337.688}, {106.75, 0}} -> {-3.46143, -1.09208, \ 0.0204604, 0.0204604}}], Cell["\<\ \:ff08\:ff12\:ff09\:548c sin x+cos x \:306e\:30b0\:30e9\:30d5\:3092\:7d2b\ \:8272\:3067\:8ffd\:52a0\:3057\:307e\:3059.\ \>", "Text", FontSize->18], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .45016 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.151576 0.225079 0.151576 [ [.02381 .21258 -8.34375 -12.875 ] [.02381 .21258 8.34375 0 ] [.2619 .21258 -11.4375 -18.9375 ] [.2619 .21258 11.4375 0 ] [.7381 .21258 -8.125 -18.9375 ] [.7381 .21258 8.125 0 ] [.97619 .21258 -5.03125 -12.875 ] [.97619 .21258 5.03125 0 ] [.4875 .0735 -12 -4.5 ] [.4875 .0735 0 4.5 ] [.4875 .37666 -6 -4.5 ] [.4875 .37666 0 4.5 ] [ 0 0 0 0 ] [ 1 .45016 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash .02381 .22508 m .02381 .23133 L s gsave .02381 .21258 -69.3438 -16.875 Mabsadd m 1 1 Mabs scale currentpoint translate 0 20.875 translate 1 -1 scale /g { setgray} bind def /k { setcmykcolor} bind def /p { gsave} bind def /r { setrgbcolor} bind def /w { setlinewidth} bind def /C { curveto} bind def /F { fill} bind def /L { lineto} bind def /rL { rlineto} bind def /P { grestore} bind def /s { stroke} bind def /S { show} bind def /N {currentpoint 3 -1 roll show moveto} bind def /Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def /m { moveto} bind def /Mr { rmoveto} bind def /Mx {currentpoint exch pop moveto} bind def /My {currentpoint pop exch moveto} bind def /X {0 rmoveto} bind def /Y {0 exch rmoveto} bind def /MISOfy { /newfontname exch def /oldfontname exch def oldfontname findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse} forall /Encoding WindowsANSIEncoding def currentdict end newfontname exch definefont pop } def 63.000 13.000 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (-) show 69.625 13.000 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (p) show 1.000 setlinewidth grestore .2619 .22508 m .2619 .23133 L s gsave .2619 .21258 -72.4375 -22.9375 Mabsadd m 1 1 Mabs scale currentpoint translate 0 26.9375 translate 1 -1 scale /g { setgray} bind def /k { setcmykcolor} bind def /p { gsave} bind def /r { setrgbcolor} bind def /w { setlinewidth} bind def /C { curveto} bind def /F { fill} bind def /L { lineto} bind def /rL { rlineto} bind def /P { grestore} bind def /s { stroke} bind def /S { show} bind def /N {currentpoint 3 -1 roll show moveto} bind def /Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def /m { moveto} bind def /Mr { rmoveto} bind def /Mx {currentpoint exch pop moveto} bind def /My {currentpoint pop exch moveto} bind def /X {0 rmoveto} bind def /Y {0 exch rmoveto} bind def /MISOfy { /newfontname exch def /oldfontname exch def oldfontname findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse} forall /Encoding WindowsANSIEncoding def currentdict end newfontname exch definefont pop } def 63.000 15.375 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (-) show 72.688 9.313 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (p) show 71.375 15.375 moveto (\\200\\200) show 75.625 15.375 moveto (\\200) show 77.750 15.375 moveto (\\200) show 72.750 21.938 moveto %%IncludeResource: font Courier %%IncludeFont: Courier %%BeginResource: font Courier-MISO %%BeginFont: Courier-MISO /Courier /Courier-MISO MISOfy %%EndFont %%EndResource %%IncludeResource: font Courier-MISO %%IncludeFont: Courier-MISO /Courier-MISO findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (2) show 1.000 setlinewidth grestore .7381 .22508 m .7381 .23133 L s gsave .7381 .21258 -69.125 -22.9375 Mabsadd m 1 1 Mabs scale currentpoint translate 0 26.9375 translate 1 -1 scale /g { setgray} bind def /k { setcmykcolor} bind def /p { gsave} bind def /r { setrgbcolor} bind def /w { setlinewidth} bind def /C { curveto} bind def /F { fill} bind def /L { lineto} bind def /rL { rlineto} bind def /P { grestore} bind def /s { stroke} bind def /S { show} bind def /N {currentpoint 3 -1 roll show moveto} bind def /Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def /m { moveto} bind def /Mr { rmoveto} bind def /Mx {currentpoint exch pop moveto} bind def /My {currentpoint pop exch moveto} bind def /X {0 rmoveto} bind def /Y {0 exch rmoveto} bind def /MISOfy { /newfontname exch def /oldfontname exch def oldfontname findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse} forall /Encoding WindowsANSIEncoding def currentdict end newfontname exch definefont pop } def 66.063 9.313 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (p) show 64.750 15.375 moveto (\\200\\200) show 69.000 15.375 moveto (\\200) show 71.125 15.375 moveto (\\200) show 66.125 21.938 moveto %%IncludeResource: font Courier %%IncludeFont: Courier %%BeginResource: font Courier-MISO %%BeginFont: Courier-MISO /Courier /Courier-MISO MISOfy %%EndFont %%EndResource %%IncludeResource: font Courier-MISO %%IncludeFont: Courier-MISO /Courier-MISO findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (2) show 1.000 setlinewidth grestore .97619 .22508 m .97619 .23133 L s gsave .97619 .21258 -66.0313 -16.875 Mabsadd m 1 1 Mabs scale currentpoint translate 0 20.875 translate 1 -1 scale /g { setgray} bind def /k { setcmykcolor} bind def /p { gsave} bind def /r { setrgbcolor} bind def /w { setlinewidth} bind def /C { curveto} bind def /F { fill} bind def /L { lineto} bind def /rL { rlineto} bind def /P { grestore} bind def /s { stroke} bind def /S { show} bind def /N {currentpoint 3 -1 roll show moveto} bind def /Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def /m { moveto} bind def /Mr { rmoveto} bind def /Mx {currentpoint exch pop moveto} bind def /My {currentpoint pop exch moveto} bind def /X {0 rmoveto} bind def /Y {0 exch rmoveto} bind def /MISOfy { /newfontname exch def /oldfontname exch def oldfontname findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse} forall /Encoding WindowsANSIEncoding def currentdict end newfontname exch definefont pop } def 63.000 13.000 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (p) show 1.000 setlinewidth grestore 0 .22508 m 1 .22508 L s .5 .0735 m .50625 .0735 L s [(-1)] .4875 .0735 1 0 Mshowa .5 .37666 m .50625 .37666 L s [(1)] .4875 .37666 1 0 Mshowa .5 0 m .5 .45016 L s 0 0 m 1 0 L 1 .45016 L 0 .45016 L closepath clip newpath 1 0 0 r .5 Mabswid .02381 .22508 m .06244 .18686 L .10458 .14808 L .14415 .11699 L .18221 .09398 L .20178 .08527 L .21267 .08143 L .22272 .07854 L .23293 .07626 L .23832 .07533 L .24402 .07456 L .24641 .07429 L .24897 .07405 L .25119 .07388 L .25361 .07373 L .25507 .07366 L .25643 .0736 L .25773 .07356 L .2584 .07354 L .25912 .07353 L .25983 .07352 L .26048 .07351 L .26176 .0735 L .26293 .07351 L .26416 .07352 L .26538 .07354 L .26607 .07356 L .26671 .07358 L .26912 .07367 L .27131 .07379 L .27364 .07396 L .27847 .07441 L .2838 .07508 L .29326 .07673 L .30213 .07881 L .32232 .08538 L .34082 .09359 L .38045 .11754 L .41855 .1475 L .45911 .18469 L .49816 .22324 L .53966 .26429 L .57964 .3011 L .61811 .33159 L .63759 .34454 L .65902 .35649 L .67938 .36543 L .69843 .37149 L .70884 .37384 L .71396 .37474 L Mistroke .71872 .37542 L .72301 .37591 L .72758 .37629 L .7302 .37645 L .73148 .37651 L .73266 .37656 L .73371 .37659 L .73487 .37662 L .73603 .37664 L .73725 .37665 L .73856 .37665 L .73977 .37665 L .7404 .37664 L .7411 .37663 L .74251 .37659 L .74375 .37655 L .74508 .37649 L .74748 .37636 L .74985 .3762 L .75235 .37599 L .7568 .3755 L .76198 .37478 L .7668 .37394 L .77773 .3715 L .78828 .36842 L .79823 .36488 L .81683 .35666 L .85534 .33352 L .89632 .30131 L .93577 .26502 L .97371 .22756 L .97619 .22508 L Mfstroke 0 .4 1 r .02381 .0735 m .02499 .07351 L .02605 .07352 L .02729 .07354 L .02846 .07357 L .03053 .07365 L .03279 .07377 L .03527 .07394 L .0379 .07416 L .04262 .07467 L .04749 .07535 L .05205 .07613 L .06244 .0784 L .07305 .08143 L .08274 .08482 L .10458 .09452 L .14429 .11892 L .18248 .14924 L .22313 .18672 L .26226 .22543 L .30384 .26648 L .34391 .30314 L .38246 .33332 L .402 .34606 L .42346 .35774 L .44388 .36638 L .45301 .36943 L .46295 .37215 L .46838 .37337 L .4734 .37433 L .4781 .37508 L .4833 .37574 L .48553 .37597 L .48794 .37618 L .49002 .37633 L .4923 .37646 L .49473 .37656 L .49605 .3766 L .49728 .37663 L .49844 .37665 L .49949 .37665 L .50071 .37665 L .50186 .37664 L .50301 .37663 L .50425 .3766 L .50542 .37656 L .50648 .37652 L .5091 .37638 L .51158 .37621 L .5165 .37576 L Mistroke .52187 .37508 L .53144 .37341 L .54032 .37132 L .56088 .36459 L .5795 .35628 L .61962 .33185 L .65822 .3013 L .69928 .26347 L .73882 .22435 L .77684 .18675 L .81732 .14941 L .85628 .11851 L .87613 .10535 L .89769 .09338 L .91843 .08437 L .92832 .081 L .93759 .07839 L .94643 .07641 L .95595 .07485 L .9611 .07425 L .96369 .07402 L .96652 .07381 L .96894 .07368 L .9703 .07362 L .97153 .07357 L .97268 .07354 L .97393 .07352 L .97511 .07351 L .97619 .0735 L Mfstroke .8 0 1 r .02381 .0735 m .04262 .05591 L .06244 .04018 L .08255 .02746 L .09409 .02172 L .10458 .01752 L .11464 .01442 L .11926 .01331 L .12415 .01235 L .12664 .01194 L .12937 .01157 L .13189 .01128 L .13419 .01107 L .1369 .01088 L .1384 .01081 L .13908 .01078 L .13982 .01076 L .14112 .01073 L .14234 .01072 L .14308 .01072 L .14378 .01072 L .14509 .01074 L .14625 .01077 L .1475 .01082 L .14867 .01088 L .14974 .01094 L .15237 .01114 L .15485 .01139 L .15979 .01205 L .16517 .01304 L .17476 .01545 L .18364 .01843 L .2023 .02699 L .22291 .03992 L .26311 .07471 L .3018 .11815 L .34294 .17188 L .38256 .22735 L .42067 .28061 L .46123 .33337 L .50027 .37693 L .52019 .39544 L .54177 .41218 L .56257 .42473 L .57248 .4294 L .58175 .43298 L .5908 .43573 L .59545 .43685 L .60052 .43784 L .60339 .4383 L Mistroke .60605 .43865 L .60881 .43895 L .6113 .43916 L .61249 .43924 L .61376 .43931 L .61497 .43936 L .61608 .4394 L .61726 .43942 L .61855 .43944 L .6192 .43944 L .6199 .43944 L .62116 .43942 L .62238 .43939 L .62308 .43936 L .62373 .43934 L .62515 .43927 L .62646 .43918 L .62882 .43899 L .63136 .43873 L .63676 .43798 L .64244 .43689 L .65206 .43438 L .66257 .43066 L .68222 .42109 L .70318 .40726 L .74473 .36987 L .78477 .32359 L .82329 .27256 L .86426 .21502 L .90371 .16025 L .94165 .11166 L .97619 .0735 L Mfstroke % End of Graphics MathPictureEnd \ \>"], "Text", CellFrame->True, ImageSize->{325, 146.25}, ImageMargins->{{279, 0}, {0, 6}}, ImageRegion->{{0, 1}, {0, 1}}, Background->GrayLevel[0.833326], ImageCache->GraphicsData["CompressedBitmap", "\<\ eJytm/lvVUUUx4e+vrbQ0tIdutCWln0HWRQJuAAFF1wBF8CCLRREkEU0atyi xmhiQmJM9Bfi38Ov/D3PN3Pmnjvvvs88pjxv0nY695zv+c7cuXfOzDnz2tzd q/M35u4uXp6bPHF77tbVxct3Jo/fvF2tKi0zZtkxY8yDSWPLlWrR//rXPH78 2JRs2ZXsz0P32/zvtzbbPz3mkalciwvN2D9lK9RjSyVbuhIXn1KhYVtqsaX5 uPiECo1p6XJcfFyFJrU0FxcfVaEZLV2Mi69RoU1aOh8XX+1vVaX01haoez8O MaR2dmipgfggoO+CurNxiH618wwonokr9oH4Pqh7Nw7RC+IHlE8DxR4Veh4g 3oordoP4Yah7Mw6xEsSPQN0bcYguEH8B6k7HITpB/CXtlQaKK0DxeAysbAFa 42DLQXEW6l4GiAawHQGEWZCfVvv7qL3R5r6Mcrfiv5Ou7nDMiqv6w5baHVYt ufZgTDkrB6VURWyHtpQFsXp3j9fgLqK63z2bhUobIHcEb6QjskuJ0IhpVyIH Es3/LN1XRe4APHmYZlg5blED9KIuV3J7ZNy5x1Bv9EfFozdHhqMZUaEZNUof t66Gbf7eE1mQqamgK69MNmVUhfyUUfEf+oJ4t97dB6a+VZRVMZo6mVWFxhRs DMR79O5eMPWNotBjkE6VadYJrVawtSDeq3d3g6mvFKU/bmpahQYUbArE+/Tu TjD1ZS0Kdb4x62t72YHNgHjGthIY2AZG7yseDS4ZNGZjprhQfKC1BtbHiDia ZP5zQKbWy5Aym5TtCoXdDOIDQG4zmL+reEOxkWHUYQk5lutaVWe+hlxo9A7g UeeLO2G2KsdS3fAJxQf17kYw+pmiDEdHi9muQoW+Iw8q67FQbgYs34LmUm/L MzM7AthMZU+i+WkwfxPMUxd489u0F1tAkfphWDXI/A3tUvqiDgaPuNCWkiru BsXVoDEJ5j+BRpBTPlQ71EPYNoCg8UeUJoDS9URK8pCyV76S+2lJRJwGmV/U fh2NG90IbelURTI6AhpjYP4qNGIk1ghjNgBsN0BsT6Q0CpSuJFKSAWxmtHv7 lkLEaZD5ee1XcgSEiL5aYVv6VZGMjoHGajD/MTSiAZF1ADsEEFsTKQ0DpcuJ lKQ31dPAlj4FpSGgdCmRktTppyiEHWmC0iBQmkukNC6UJgB2DCBoe2IcdAeA 0keANx6ntBZg1wKEM+VWVbTDQOT6gdysovQn0hQuaGASIMgo+XKE1xcjXKhL pS5PG8eSe4Nr3OwkwrVfvEDjJNT1Ak1ae3iao0BzPUCQeVqW0FjvAd1TUNeT SF1GAE4ytFwQ2NYaU4ZXtMS+G5jOMmRqA+SzqQtdXCoUG+CW9OQ9EueVwPmk oqTSlAkHvautALERIOhr3AXk3gO8iTilYYDdDhDOk3WPyZU6Ys+daHYCzWOK J4Amu1y/kpdIjRCPApcROwEitV9XAOGziZRk9aRbiCFEC9S1gvndTVAnu2cS qZNnRZzL0sTCkKh/iduA317gsgG4kD/UAVzeBbxJwFvDFP3eZHGE2qsMDPY1 wb4d2L+TyL7ocj+BOg2qA01Qp/3PtxOpF9dPAXX3mpXlpa83+iwYKAMRGqG0 FCWnn/BOJNooAT/aLxzVVvod+VVA5FC0sXVDltxjahvtlEdm23JiUzaJQr6F fCThGdmLvDviXALORdcsHOBPIiw+gE7ioamjAFHsMnvFp/NaPBoiRD112MgS BndoXwSIFh1l1NfT/smEKBmhU6qZzcQedjrOqhNYvQysaFN72nd1qFu9ToP6 OlAXf0mn6BDl+JIY5Lr2ej3RvOwU6zQbmp99CvPZyHgVdKn/vfmCz5Q9vYrJ r1O+zgUa/TXt6x4FkjNN6E6Dbpv9tUzo0YQdLley1jbqJXtlvXwy6KUMk3pp JujhrK49jVL2AlAUZF1BzsIXH7p0S2NKmb6fBs8lDr11/sUJqVfhnnbU2x8f G6U1AzGQ71S5hkHWEUt7/cnfzhNInkBD9y1M/ef3SZ/4VEo+qvpBIqUJoFQC WBfLd/sW5HsRER9z/VAVU82TE0huRtQJdDO8Dx5eAEXy9tYCEXKkyblL9UY9 pYuJlMaBEq1MmnGQfWSTtg5poUWU2gGWlhupC0Ef96QNVqJEYY4OgKX1Wyol HwulbWiiRHEGmnebWS77mClt1pPjR5TIE2lm88HHMCmkQZRGgBK5Z7Spswnw aBNsUCjNJ1JaA5TIj6Wtr1RKPta5kEiJtjbcqsB95Cg5IJWIDzZS/I08cSLS A7AbAI+SJCj84MOOFKUkShS9ojVqniBDER8i4oONi4lEKGbVC7BTgBeN+ATZ SeZaIpFBINIHRCaWQqSg6ylRIJ1W+EQpz8qhgFNqWM7HsSjJgIhQvGUQYJuJ FPqY1Y1EShSzoi3hZuKp8qjNp4mUKMhDW+0UdaZkJAouyeSBuTGUFUGUKCAx 0AQlH46hbCGi1AuUKJTjs/uqcDsAJc9M8HvveZoUPZpVYDSHWAXUySjR9OYp NYxSMSiYR0OvqwlKsoyVFLkCBKUyESX6eC3XHqZkKiIi85m5p4rUIxQgpHml HZrTOInIbwTeB0XaK6aoH03+tHEaTS8r6HpKXyRSoljfpLYvTzSjNDsy73fy 8nzVVKPFzU9LfC/oDik5cT0lC7fQUsohpHDhNOhSSh199r35rxPNU/AvT0OW nnb49ic1p1Le1yDnmeLPFLubUA1aRlPOVJ63Kh0kOd2Fhg+CIm2NkWPRpgZo WsidEhkU5jttAfU2RcXGVIMWMuSYU6K0N/8DtIDyQyjGNQq6Xdo+WtDlyeH7 xfyP2hbqcoo/rVGNPKmddq3yuwfF1E+qSO2jcNBwLbloynuepf6cmPpFFSmZ iUyRo5Mn3dKSjZYg3vyvtV1UUKQg0oBq5EcWyCPJjyzIqRvzm/3jTq3QGSsK +vSpqfzzTHNtvvw8IqbcSR7XQ11+cITiTsT4MytOqvGRkk69K0ewzANVXOGf UihufFjPCSSckHF3Zc/X/KktzqNQLQVFe3WqgV0KQYdn2qTPq3clFmv+sn/c AZ/WQDzrdPe83Qmo/WK+wiecWvTuKwL7T+Hp2bHZ6j/yzsCC/LimvSgcrFm5 m00BrhlvMGLxbcjozEqPVf89k6ZoS1b5BLTLQ/ztn0KWd1EbKKgqHANdyWrx h2frN/at6Eugdi5U4434UPwI1L0XhyiBOJ1mfD8O0aodfEhL5+PidGztANQ1 gKARtw/qLsQhOpQqnVm9GFekw487FexSXLFThWhB0UBxpSpu0dJ8XDw/2LpB S1fi4vTVmVLFxbhinwpNaOl6XHxAhfxBvWrpRlx8SIUGtHQrLu4++u4r2612 7sTF3Tqr2wrdiws9bOaWWfYf7bC+rQ==\ \>"], ImageRangeCache->{{{0, 324}, {145.25, 0}} -> {-3.31914, -1.48494, 0.0204468, \ 0.0204468}}], Cell[TextData[{ StyleBox["\:6ce8\:610f", FontColor->RGBColor[1, 0, 0]], "\:ff1a\:548c sin x + cos x \:306e\:30b0\:30e9\:30d5\:306f\:ff0c\:4e8c\:3064\ \:306e\:5024\:306e\:548c\:ff08\:30b0\:30e9\:30d5\:306e\:9ad8\:3055\:3092\:52a0\ \:3048\:308b\:64cd\:4f5c\:ff09\:306b\:3088\:3063\:3066\:63cf\:304b\:308c\:308b\ \:3053\:3068\:306b\:6ce8\:610f\:3057\:3066\:304f\:3060\:3055\:3044.\:3000\ \:4ee5\:4e0b\:306e\:30a2\:30cb\:30e1\:30fc\:30b7\:30e7\:30f3\:3067\:3088\:308a\ \:308f\:304b\:308a\:3084\:3059\:304f\:78ba\:8a8d\:3067\:304d\:307e\:3059\:ff0e\ \:9752\:3044\:30b0\:30e9\:30d5\:306e\:9ad8\:3055\:306b\:ff0c\:8d64\:3044\:30b0\ \:30e9\:30d5\:306e\:9ad8\:3055\:3092\:793a\:3059\:7e26\:65b9\:5411\:306e\:9ec4\ \:7dd1\:306e\:9ad8\:3055\:ff08\:7834\:7dda\:306f\:540c\:3058\:9577\:3055\:3092\ \:793a\:3059\:ff09\:3092\:52a0\:3048\:3066\:ff0c\:7d2b\:8272\:306e\:30b0\:30e9\ \:30d5\:3092\:63cf\:304d\:307e\:3059\:ff0e\:305f\:3060\:3057\:ff0c\:5024\:304c\ \:ff0c\:ff58\:8ef8\:3088\:308a\:4e0b\:306b\:3042\:308b\:5834\:5408\:306f\:5f15\ \:304d\:7b97\:306b\:306a\:308b\:ff0e" }], "Text", CellChangeTimes->{{3.466588822125*^9, 3.4665888604375*^9}, { 3.4665890084375*^9, 3.46658908465625*^9}, {3.4665891704375*^9, 3.466589301203125*^9}, {3.46658933621875*^9, 3.466589341875*^9}, { 3.466589375359375*^9, 3.46658938609375*^9}, {3.466589421734375*^9, 3.466589614515625*^9}, {3.46658965096875*^9, 3.466589718390625*^9}}, FontSize->18], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Sin", "[", "x", "]"}], ",", RowBox[{"Cos", "[", "x", "]"}], ",", RowBox[{ RowBox[{"Sin", "[", "x", "]"}], "+", RowBox[{"Cos", "[", "x", "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "Pi"}], ",", "Pi"}], "}"}], ",", RowBox[{"AspectRatio", "\[Rule]", "Automatic"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "Pi"}], ",", "Pi"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2.2"}], ",", "2.2"}], "}"}]}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Hue", "[", "0.0", "]"}], ",", RowBox[{"Hue", "[", "0.6", "]"}], ",", RowBox[{"Hue", "[", "0.8", "]"}]}], "}"}]}], ",", RowBox[{"Ticks", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "Pi"}], ",", RowBox[{ RowBox[{"-", "Pi"}], "/", "2"}], ",", "0", ",", RowBox[{"Pi", "/", "2"}], ",", "Pi"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "0", ",", "1"}], "}"}]}], "}"}]}], ",", RowBox[{"ImageSize", "\[Rule]", "500"}], ",", RowBox[{"Epilog", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Hue", "[", "0.3", "]"}], ",", "Thick", ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"a", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"a", ",", RowBox[{"Sin", "[", "a", "]"}]}], "}"}]}], "}"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"Dashed", ",", RowBox[{"PointSize", "[", "0.001", "]"}], ",", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"a", ",", RowBox[{"Cos", "[", "a", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"a", ",", RowBox[{ RowBox[{"Sin", "[", "a", "]"}], "+", RowBox[{"Cos", "[", "a", "]"}]}]}], "}"}]}], "}"}], "]"}]}], "}"}]}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"a", ",", RowBox[{"-", "Pi"}], ",", "Pi", ",", "0.1"}], "}"}], ",", RowBox[{"SaveDefinitions", "\[Rule]", "True"}]}], "]"}]], "Input", CellChangeTimes->{{3.4166229757853174`*^9, 3.416622984519692*^9}, { 3.41678474496875*^9, 3.4167848423125*^9}, {3.41678487503125*^9, 3.416784942640625*^9}, {3.416784993296875*^9, 3.41678506175*^9}, { 3.416785114875*^9, 3.416785118796875*^9}, {3.416785227984375*^9, 3.416785238*^9}, {3.421481680109375*^9, 3.421481863390625*^9}, { 3.421481953921875*^9, 3.4214819643125*^9}, {3.42148201325*^9, 3.421482075046875*^9}, {3.421482109578125*^9, 3.421482125828125*^9}, { 3.42148243003125*^9, 3.4214824505*^9}, {3.422669595546875*^9, 3.422669633015625*^9}, {3.4226698256875*^9, 3.42266990909375*^9}, { 3.42266995840625*^9, 3.42267007465625*^9}, {3.422670123203125*^9, 3.4226701249375*^9}, {3.422670171234375*^9, 3.422670204046875*^9}, { 3.42267025915625*^9, 3.422670275484375*^9}, {3.422670323609375*^9, 3.42267035540625*^9}, {3.422670393296875*^9, 3.422670433890625*^9}, { 3.422670488734375*^9, 3.42267052940625*^9}, {3.4226705644375*^9, 3.42267057890625*^9}, {3.422670614046875*^9, 3.42267062228125*^9}, { 3.422670660359375*^9, 3.42267066996875*^9}, {3.42267071190625*^9, 3.422670726421875*^9}, {3.422670821875*^9, 3.4226708260625*^9}, { 3.422670860765625*^9, 3.422670872484375*^9}, {3.422670964265625*^9, 3.422670972375*^9}, {3.422671619484375*^9, 3.42267163259375*^9}, { 3.466378731890625*^9, 3.466378919703125*^9}, {3.466378953484375*^9, 3.4663789593125*^9}, {3.4663790105*^9, 3.4663790774375*^9}, { 3.46637921840625*^9, 3.4663792353125*^9}, {3.466379554578125*^9, 3.466379616359375*^9}, {3.466379776421875*^9, 3.466379858953125*^9}, { 3.466379906578125*^9, 3.46637992846875*^9}, 3.466379967953125*^9, { 3.46638000284375*^9, 3.466380064421875*^9}, {3.466380098625*^9, 3.466380123875*^9}, {3.46638414290625*^9, 3.466384206484375*^9}, { 3.46638426365625*^9, 3.466384367859375*^9}, {3.466384400125*^9, 3.466384406328125*^9}, {3.466453989546875*^9, 3.466453990109375*^9}, { 3.466588931546875*^9, 3.466588941171875*^9}}], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`a$$ = -Pi, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[$CellContext`a$$], -Pi, Pi, 0.1}}, Typeset`size$$ = { 500., {170., 174.}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True, $CellContext`a$4219$$ = 0}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`a$$ = -Pi}, "ControllerVariables" :> { Hold[$CellContext`a$$, $CellContext`a$4219$$, 0]}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Plot[{ Sin[$CellContext`x], Cos[$CellContext`x], Sin[$CellContext`x] + Cos[$CellContext`x]}, {$CellContext`x, -Pi, Pi}, AspectRatio -> Automatic, PlotRange -> {{-Pi, Pi}, {-2.2, 2.2}}, PlotStyle -> { Hue[0.], Hue[0.6], Hue[0.8]}, Ticks -> {{-Pi, (-Pi)/2, 0, Pi/2, Pi}, {-1, 0, 1}}, ImageSize -> 500, Epilog -> {{ Hue[0.3], Thick, Line[{{$CellContext`a$$, 0}, {$CellContext`a$$, Sin[$CellContext`a$$]}}]}, {Dashed, PointSize[0.001], Line[{{$CellContext`a$$, Cos[$CellContext`a$$]}, {$CellContext`a$$, Sin[$CellContext`a$$] + Cos[$CellContext`a$$]}}]}}], "Specifications" :> {{$CellContext`a$$, -Pi, Pi, 0.1}}, "Options" :> {}, "DefaultOptions" :> {}], ImageSizeCache->{547., {215., 220.}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{{3.46645398428125*^9, 3.466453992015625*^9}, { 3.4665888965*^9, 3.46658891221875*^9}, {3.466588943328125*^9, 3.466588981203125*^9}, {3.466589107140625*^9, 3.466589158015625*^9}, { 3.466589310390625*^9, 3.4665893181875*^9}, {3.4665894015625*^9, 3.466589402859375*^9}, {3.466589822265625*^9, 3.4665898313125*^9}, { 3.49465340653125*^9, 3.494653411859375*^9}, {3.4946544545*^9, 3.494654459609375*^9}}, Background->RGBColor[ 0.8431372549019608, 0.8431372549019608, 0.8431372549019608]] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["\:554f\:984c", FontColor->RGBColor[0, 0, 1]], "\:3000\:4e0a\:306e\:7d2b\:8272\:306e\:30b0\:30e9\:30d5\:306f \:3069\:3093\ \:306a\:5f0f\:3067\:8868\:3055\:308c\:308b\:3057\:3087\:3046\:304b\:ff0e" }], "Subsection", FontSize->18], Cell[BoxData[{ StyleBox[Cell["\:5408\:6210\:306e\:5f0f\:304c\:9069\:7528\:3055\:308c\:3066"], FontSize->16], "\[IndentingNewLine]", StyleBox[ RowBox[{" ", Cell[TextData[{ "sin x + cos x = ", Cell[BoxData[ FormBox[ RowBox[{ SqrtBox["2"], "sin", " ", RowBox[{"(", RowBox[{"x", "+", FractionBox["\[Pi]", "4"]}], ")"}]}], TraditionalForm]]] }]]}], FontSize->16]}], "Text", CellChangeTimes->{{3.494653733953125*^9, 3.49465387196875*^9}, { 3.494653978984375*^9, 3.49465399371875*^9}}, Background->RGBColor[0.4, 0.7019607843137254, 0.7019607843137254]], Cell[TextData[StyleBox["\:4e09\:89d2\:95a2\:6570\:306e\:4e0d\:601d\:8b70\:ff11\ ", FontSize->36, FontColor->RGBColor[0.501961, 0.25098, 0.25098]]], "Text", CellChangeTimes->{{3.4946512849375*^9, 3.494651288875*^9}}, TextAlignment->Center, FontColor->RGBColor[1., 1., 0.6745098039215687], Background->RGBColor[1., 1., 0.6352941176470588]], Cell[TextData[StyleBox["\:548c sin x+cos x \:306e\:30b0\:30e9\:30d5\:306f\ \:3001 sin x \:306e\:30b0\:30e9\:30d5\:306e\:3088\:3046\:306a\:6ce2\:306b\ \:306a\:308a\:3001\:5f0f sin \:3092\:7528\:3044\:3066\:8868\:3055\:308c\:308b\ \:3088\:3046\:306b\:306a\:308b\:ff0e", FontSize->24, FontColor->RGBColor[1, 0, 0]]], "Text", CellChangeTimes->{{3.43321401890625*^9, 3.433214020859375*^9}, { 3.433214084921875*^9, 3.433214122*^9}}] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["\:4e09\:89d2\:95a2\:6570 ", FontSize->24], Cell[BoxData[ RowBox[{"sin", " ", "x"}]], FontSize->24], StyleBox[" \:3068 ", FontSize->24], Cell[BoxData[ RowBox[{"cos", " ", "x"}]], FontSize->24], StyleBox[" \:306e\:7a4d\:306e\:30b0\:30e9\:30d5", FontSize->24] }], "Section", CellChangeTimes->{3.49465254875*^9}, Background->RGBColor[0.5019607843137255, 1., 1.]], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .31831 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.151576 0.159155 0.151576 [ [.02381 .14665 -8.34375 -12.875 ] [.02381 .14665 8.34375 0 ] [.38095 .14665 -11.4375 -18.9375 ] [.38095 .14665 11.4375 0 ] [.2619 .14665 -11.4375 -18.9375 ] [.2619 .14665 11.4375 0 ] [.61905 .14665 -8.125 -18.9375 ] [.61905 .14665 8.125 0 ] [.7381 .14665 -8.125 -18.9375 ] [.7381 .14665 8.125 0 ] [.97619 .14665 -5.03125 -12.875 ] [.97619 .14665 5.03125 0 ] [.4875 .00758 -12 -4.5 ] [.4875 .00758 0 4.5 ] [.4875 .31073 -6 -4.5 ] [.4875 .31073 0 4.5 ] [ 0 0 0 0 ] [ 1 .31831 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash .02381 .15915 m .02381 .1654 L s gsave .02381 .14665 -69.3438 -16.875 Mabsadd m 1 1 Mabs scale currentpoint translate 0 20.875 translate 1 -1 scale /g { setgray} bind def /k { setcmykcolor} bind def /p { gsave} bind def /r { setrgbcolor} bind def /w { setlinewidth} bind def /C { curveto} bind def /F { fill} bind def /L { lineto} bind def /rL { rlineto} bind def /P { grestore} bind def /s { stroke} bind def /S { show} bind def /N {currentpoint 3 -1 roll show moveto} bind def /Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def /m { moveto} bind def /Mr { rmoveto} bind def /Mx {currentpoint exch pop moveto} bind def /My {currentpoint pop exch moveto} bind def /X {0 rmoveto} bind def /Y {0 exch rmoveto} bind def /MISOfy { /newfontname exch def /oldfontname exch def oldfontname findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse} forall /Encoding WindowsANSIEncoding def currentdict end newfontname exch definefont pop } def 63.000 13.000 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (-) show 69.625 13.000 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (p) show 1.000 setlinewidth grestore .38095 .15915 m .38095 .1654 L s gsave .38095 .14665 -72.4375 -22.9375 Mabsadd m 1 1 Mabs scale currentpoint translate 0 26.9375 translate 1 -1 scale /g { setgray} bind def /k { setcmykcolor} bind def /p { gsave} bind def /r { setrgbcolor} bind def /w { setlinewidth} bind def /C { curveto} bind def /F { fill} bind def /L { lineto} bind def /rL { rlineto} bind def /P { grestore} bind def /s { stroke} bind def /S { show} bind def /N {currentpoint 3 -1 roll show moveto} bind def /Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def /m { moveto} bind def /Mr { rmoveto} bind def /Mx {currentpoint exch pop moveto} bind def /My {currentpoint pop exch moveto} bind def /X {0 rmoveto} bind def /Y {0 exch rmoveto} bind def /MISOfy { /newfontname exch def /oldfontname exch def oldfontname findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse} forall /Encoding WindowsANSIEncoding def currentdict end newfontname exch definefont pop } def 63.000 15.375 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (-) show 72.688 9.313 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (p) show 71.375 15.375 moveto (\\200\\200) show 75.625 15.375 moveto (\\200) show 77.750 15.375 moveto (\\200) show 72.750 21.938 moveto %%IncludeResource: font Courier %%IncludeFont: Courier %%BeginResource: font Courier-MISO %%BeginFont: Courier-MISO /Courier /Courier-MISO MISOfy %%EndFont %%EndResource %%IncludeResource: font Courier-MISO %%IncludeFont: Courier-MISO /Courier-MISO findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (4) show 1.000 setlinewidth grestore .2619 .15915 m .2619 .1654 L s gsave .2619 .14665 -72.4375 -22.9375 Mabsadd m 1 1 Mabs scale currentpoint translate 0 26.9375 translate 1 -1 scale /g { setgray} bind def /k { setcmykcolor} bind def /p { gsave} bind def /r { setrgbcolor} bind def /w { setlinewidth} bind def /C { curveto} bind def /F { fill} bind def /L { lineto} bind def /rL { rlineto} bind def /P { grestore} bind def /s { stroke} bind def /S { show} bind def /N {currentpoint 3 -1 roll show moveto} bind def /Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def /m { moveto} bind def /Mr { rmoveto} bind def /Mx {currentpoint exch pop moveto} bind def /My {currentpoint pop exch moveto} bind def /X {0 rmoveto} bind def /Y {0 exch rmoveto} bind def /MISOfy { /newfontname exch def /oldfontname exch def oldfontname findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse} forall /Encoding WindowsANSIEncoding def currentdict end newfontname exch definefont pop } def 63.000 15.375 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (-) show 72.688 9.313 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (p) show 71.375 15.375 moveto (\\200\\200) show 75.625 15.375 moveto (\\200) show 77.750 15.375 moveto (\\200) show 72.750 21.938 moveto %%IncludeResource: font Courier %%IncludeFont: Courier %%BeginResource: font Courier-MISO %%BeginFont: Courier-MISO /Courier /Courier-MISO MISOfy %%EndFont %%EndResource %%IncludeResource: font Courier-MISO %%IncludeFont: Courier-MISO /Courier-MISO findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (2) show 1.000 setlinewidth grestore .61905 .15915 m .61905 .1654 L s gsave .61905 .14665 -69.125 -22.9375 Mabsadd m 1 1 Mabs scale currentpoint translate 0 26.9375 translate 1 -1 scale /g { setgray} bind def /k { setcmykcolor} bind def /p { gsave} bind def /r { setrgbcolor} bind def /w { setlinewidth} bind def /C { curveto} bind def /F { fill} bind def /L { lineto} bind def /rL { rlineto} bind def /P { grestore} bind def /s { stroke} bind def /S { show} bind def /N {currentpoint 3 -1 roll show moveto} bind def /Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def /m { moveto} bind def /Mr { rmoveto} bind def /Mx {currentpoint exch pop moveto} bind def /My {currentpoint pop exch moveto} bind def /X {0 rmoveto} bind def /Y {0 exch rmoveto} bind def /MISOfy { /newfontname exch def /oldfontname exch def oldfontname findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse} forall /Encoding WindowsANSIEncoding def currentdict end newfontname exch definefont pop } def 66.063 9.313 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (p) show 64.750 15.375 moveto (\\200\\200) show 69.000 15.375 moveto (\\200) show 71.125 15.375 moveto (\\200) show 66.125 21.938 moveto %%IncludeResource: font Courier %%IncludeFont: Courier %%BeginResource: font Courier-MISO %%BeginFont: Courier-MISO /Courier /Courier-MISO MISOfy %%EndFont %%EndResource %%IncludeResource: font Courier-MISO %%IncludeFont: Courier-MISO /Courier-MISO findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (4) show 1.000 setlinewidth grestore .7381 .15915 m .7381 .1654 L s gsave .7381 .14665 -69.125 -22.9375 Mabsadd m 1 1 Mabs scale currentpoint translate 0 26.9375 translate 1 -1 scale /g { setgray} bind def /k { setcmykcolor} bind def /p { gsave} bind def /r { setrgbcolor} bind def /w { setlinewidth} bind def /C { curveto} bind def /F { fill} bind def /L { lineto} bind def /rL { rlineto} bind def /P { grestore} bind def /s { stroke} bind def /S { show} bind def /N {currentpoint 3 -1 roll show moveto} bind def /Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def /m { moveto} bind def /Mr { rmoveto} bind def /Mx {currentpoint exch pop moveto} bind def /My {currentpoint pop exch moveto} bind def /X {0 rmoveto} bind def /Y {0 exch rmoveto} bind def /MISOfy { /newfontname exch def /oldfontname exch def oldfontname findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse} forall /Encoding WindowsANSIEncoding def currentdict end newfontname exch definefont pop } def 66.063 9.313 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (p) show 64.750 15.375 moveto (\\200\\200) show 69.000 15.375 moveto (\\200) show 71.125 15.375 moveto (\\200) show 66.125 21.938 moveto %%IncludeResource: font Courier %%IncludeFont: Courier %%BeginResource: font Courier-MISO %%BeginFont: Courier-MISO /Courier /Courier-MISO MISOfy %%EndFont %%EndResource %%IncludeResource: font Courier-MISO %%IncludeFont: Courier-MISO /Courier-MISO findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (2) show 1.000 setlinewidth grestore .97619 .15915 m .97619 .1654 L s gsave .97619 .14665 -66.0313 -16.875 Mabsadd m 1 1 Mabs scale currentpoint translate 0 20.875 translate 1 -1 scale /g { setgray} bind def /k { setcmykcolor} bind def /p { gsave} bind def /r { setrgbcolor} bind def /w { setlinewidth} bind def /C { curveto} bind def /F { fill} bind def /L { lineto} bind def /rL { rlineto} bind def /P { grestore} bind def /s { stroke} bind def /S { show} bind def /N {currentpoint 3 -1 roll show moveto} bind def /Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def /m { moveto} bind def /Mr { rmoveto} bind def /Mx {currentpoint exch pop moveto} bind def /My {currentpoint pop exch moveto} bind def /X {0 rmoveto} bind def /Y {0 exch rmoveto} bind def /MISOfy { /newfontname exch def /oldfontname exch def oldfontname findfont dup length dict begin {1 index /FID ne {def} {pop pop} ifelse} forall /Encoding WindowsANSIEncoding def currentdict end newfontname exch definefont pop } def 63.000 13.000 moveto %%IncludeResource: font Mathematica1Mono %%IncludeFont: Mathematica1Mono /Mathematica1Mono findfont 10.000 scalefont [1 0 0 -1 0 0 ] makefont setfont 0.000 0.000 0.000 setrgbcolor (p) show 1.000 setlinewidth grestore 0 .15915 m 1 .15915 L s .5 .00758 m .50625 .00758 L s [(-1)] .4875 .00758 1 0 Mshowa .5 .31073 m .50625 .31073 L s [(1)] .4875 .31073 1 0 Mshowa .5 0 m .5 .31831 L s 0 0 m 1 0 L 1 .31831 L 0 .31831 L closepath clip newpath 1 0 0 r .5 Mabswid .02381 .15915 m .06244 .12094 L .10458 .08215 L .14415 .05106 L .18221 .02805 L .20178 .01935 L .21267 .01551 L .22272 .01262 L .23293 .01034 L .23832 .00941 L .24402 .00863 L .24641 .00837 L .24897 .00813 L .25119 .00796 L .25361 .00781 L .25507 .00773 L .25643 .00768 L .25773 .00764 L .2584 .00762 L .25912 .0076 L .25983 .00759 L .26048 .00759 L .26176 .00758 L .26293 .00758 L .26416 .0076 L .26538 .00762 L .26607 .00764 L .26671 .00765 L .26912 .00775 L .27131 .00787 L .27364 .00803 L .27847 .00848 L .2838 .00916 L .29326 .01081 L .30213 .01289 L .32232 .01946 L .34082 .02766 L .38045 .05162 L .41855 .08157 L .45911 .11876 L .49816 .15732 L .53966 .19836 L .57964 .23518 L .61811 .26567 L .63759 .27861 L .65902 .29057 L .67938 .2995 L .69843 .30557 L .70884 .30792 L .71396 .30881 L Mistroke .71872 .30949 L .72301 .30998 L .72758 .31037 L .7302 .31053 L .73148 .31059 L .73266 .31063 L .73371 .31067 L .73487 .3107 L .73603 .31072 L .73725 .31073 L .73856 .31073 L .73977 .31072 L .7404 .31071 L .7411 .3107 L .74251 .31067 L .74375 .31063 L .74508 .31057 L .74748 .31044 L .74985 .31028 L .75235 .31006 L .7568 .30958 L .76198 .30885 L .7668 .30802 L .77773 .30558 L .78828 .3025 L .79823 .29896 L .81683 .29074 L .85534 .2676 L .89632 .23538 L .93577 .1991 L .97371 .16164 L .97619 .15915 L Mfstroke 0 .4 1 r .02381 .00758 m .02499 .00758 L .02605 .0076 L .02729 .00762 L .02846 .00765 L .03053 .00773 L .03279 .00784 L .03527 .00801 L .0379 .00823 L .04262 .00874 L .04749 .00942 L .05205 .0102 L .06244 .01248 L .07305 .01551 L .08274 .01889 L .10458 .02859 L .14429 .05299 L .18248 .08332 L .22313 .1208 L .26226 .15951 L .30384 .20056 L .34391 .23721 L .38246 .26739 L .402 .28014 L .42346 .29181 L .44388 .30046 L .45301 .30351 L .46295 .30622 L .46838 .30744 L .4734 .3084 L .4781 .30915 L .4833 .30981 L .48553 .31004 L .48794 .31025 L .49002 .3104 L .4923 .31054 L .49473 .31064 L .49605 .31068 L .49728 .31071 L .49844 .31072 L .49949 .31073 L .50071 .31073 L .50186 .31072 L .50301 .3107 L .50425 .31067 L .50542 .31063 L .50648 .31059 L .5091 .31046 L .51158 .31029 L .5165 .30983 L Mistroke .52187 .30916 L .53144 .30748 L .54032 .3054 L .56088 .29867 L .5795 .29035 L .61962 .26593 L .65822 .23538 L .69928 .19755 L .73882 .15843 L .77684 .12083 L .81732 .08349 L .85628 .05259 L .87613 .03942 L .89769 .02745 L .91843 .01845 L .92832 .01508 L .93759 .01247 L .94643 .01049 L .95595 .00893 L .9611 .00833 L .96369 .00809 L .96652 .00789 L .96894 .00775 L .9703 .00769 L .97153 .00765 L .97268 .00762 L .97393 .0076 L .97511 .00758 L .97619 .00758 L Mfstroke .8 0 1 r .02381 .15915 m .06244 .19614 L .08255 .21219 L .0932 .21925 L .10458 .22548 L .11009 .22797 L .11531 .22999 L .12038 .23163 L .12507 .23286 L .12951 .23377 L .13178 .23413 L .13422 .23445 L .13549 .23459 L .13666 .23469 L .13784 .23478 L .13895 .23484 L .14022 .2349 L .1409 .23492 L .14161 .23493 L .1423 .23494 L .14295 .23494 L .14415 .23493 L .14531 .2349 L .14656 .23485 L .14773 .23479 L .14881 .23471 L .15143 .23446 L .15392 .23414 L .15886 .23326 L .16423 .23195 L .17382 .2287 L .1827 .22471 L .20137 .21346 L .22197 .19727 L .26217 .15889 L .30086 .12189 L .32051 .10622 L .3309 .0993 L .342 .09316 L .35275 .08855 L .35784 .08686 L .36253 .0856 L .36724 .0846 L .36972 .0842 L .37235 .08385 L .37463 .08363 L .37573 .08355 L .37677 .08348 L .37799 .08342 L .37911 .08339 L Mistroke .38031 .08337 L .38162 .08337 L .38227 .08338 L .38296 .08339 L .38419 .08344 L .38551 .0835 L .38695 .0836 L .38955 .08385 L .39197 .08417 L .39649 .08495 L .40134 .08609 L .40698 .08779 L .41232 .08977 L .42232 .09438 L .44227 .10685 L .4607 .1216 L .50002 .15918 L .53782 .19543 L .55884 .21226 L .56803 .21841 L .57808 .22414 L .58722 .22836 L .59696 .23175 L .60236 .23311 L .60726 .23403 L .60962 .23436 L .61086 .2345 L .61218 .23463 L .61333 .23473 L .61459 .23481 L .61574 .23487 L .61682 .23491 L .61808 .23494 L .61871 .23494 L .61941 .23494 L .62065 .23493 L .62181 .23489 L .62248 .23487 L .62318 .23483 L .62443 .23475 L .62578 .23464 L .62725 .2345 L .62973 .23419 L .63238 .23377 L .63715 .23279 L .64214 .23145 L .64686 .2299 L .6557 .22625 L .67568 .21475 L .69413 .2007 L Mistroke .7335 .16375 L .77136 .12695 L .79241 .10937 L .81166 .09661 L .82118 .09174 L .8262 .0896 L .83155 .08765 L .8367 .08611 L .84136 .085 L .84361 .08457 L .84604 .08418 L .84835 .08388 L .85045 .08366 L .85159 .08357 L .85283 .08349 L .85414 .08343 L .85538 .08339 L .85653 .08337 L .85776 .08337 L .85881 .08339 L .85997 .08342 L .86063 .08345 L .86132 .08348 L .86256 .08356 L .86535 .08381 L .86777 .08411 L .87041 .08452 L .87569 .08562 L .88133 .08719 L .89148 .09101 L .90173 .09611 L .91284 .10293 L .933 .11826 L .97393 .1569 L .97619 .15915 L Mfstroke % End of Graphics MathPictureEnd \ \>"], "Graphics", CellFrame->True, ImageSize->{403.438, 128.438}, ImageMargins->{{236, 0}, {0, 9}}, ImageRegion->{{0, 1}, {0, 1}}, Background->GrayLevel[0.833326], ImageCache->GraphicsData["CompressedBitmap", "\<\ eJylm/lvXFcVx188Hm9J7Im3OHacOF4TO47jOE4Tx66dpXGaZmsW0iSUKmob GiQESsMuoGIRRSyilAJiK2IRQgiQkJCQ+AH4CSH11/w9w9x77vu+O8+fsZ9g pPFc33fO93zP3Zfzrjx48sbrH3/w5NGrD0bWHz/45BuPXn1z5MInHteyStuS ZNu7SZK8NZK4dLWWDH+qydOnT3/g/ricLP0f/1NyMj7lvv+2R/9wP2X3oNxY 6F/waBPxLvfTkSQPq8+7VK9j90IjCJ/1J2l0GcQe99PiMtZMqAbR61LNLrVq qdqnuSCz37m/rQ5vjxnY736aXMaSYIdk6nxB2N8EDx5WRwz2gDIWBDtaz7vJ AbQC2K9EaczAxgU2K2bTAiOO70tjwiCmhHnIUjXFeaXOAsTPpXHQIA4pY0KK i+KzChA/EYtpg5gRxAFBLCm1AhA/lsasQcwqY18Qr0biywI7DWA/lO6cgc0p Y1CKZwD2JIC9l+Y9rCovwM4Ltl+w55UisHelccwgFpTRA3wuQN4iwL4jlOMG uwikO8XsUn295sC+B7oB9oTs7BDEVeB4DGC/K91nDOykMtoB4poMENh3gGOA XRJsWRC3wMAcwH5LuksGtqyMmqTLqYax946wCeebUls2nGeB710gdRjA3gbd ALuSg3Ai98WMwL4BYIZiPckrlkT/PnA8BLBfl8ZaVAs5xTLYpkI4CAa+BrrB 1CmAaG1kyvtHBr4KGjZEWMPyittB6B6YnwADXwHds1G3ykHs2LQOxsHAW9J4 zmAXQbFr04Ih2C+DRjCwIMUeEKKCOQAGvgS6NvCp68cQvQVNjYCpL4Luupma B4j++jrwnhLsFyR3ycDmJD5UkO0wwH4edIOBIwCxt1E5diQfJNWOzTSivM8B Spv72+5QwrA4C2D7QNG375LM+1Qb6A4Bkc8Cnh9Bmh1Ku1LWeTTYYRPID3Ze sWKVVEu1gu4gUPoM4DULZZdcXDBKMwA7ChBLgugXRBl09wClTwcSMV7qYIZ2 1AhNA+g4EHpGhIYEUQLdASD0KcDzUMMCtcareSRGnATt41IcUaoJdHcDmye5 4qmpuu8BAVmz0YyA01DEZV6K4wH5gyR7WtOmInkzAgoENEPE6lYgtoTPcZkG LnMAMSF+ufVKP/B6nOPl/psSQGCT7QGOWCpd7frtWI/EB6ylJGE3mOfgfnuB w4zUpgXaK0NYQPV51mLUjONCOwqF1gMcegCW+lolJ1dNuebkaN1Fi6Z4Jkvb xSxwCVu7MXDxWEEXdwGs7y/+JKAbHCOUQ9KYgafdOXfURn1bCE6MghPHCzrR KbDBtFtHT6PKiP3obuTHRvVZEK2AU8dyZtzX/NL6JnbvBLhXYQadgJyfG92n L+5iuLyjsSMCmGH75O1x4GRuan7FLXTe26ZGDg7r6e7oaYpJHs1I47BSRP2E iikQ3g+El4BwNlctAaVOoPQx1Eif2tooaXiSkTM/BBCngchOIPJoC906FxOt O2NKtFn1E252AtfmUq0A2yc5P/a3JEom6WcAPNkBnkzJ0KRAc1C+5juAxgrk 2WoXG1QT5NEKbA1KZjeYWgUXt4ONj26hm+a1FeRsNpL2+krY2M9pwXsWfOsD LmfAtw7g8nAL3XrfGgyFmrjiwasF2J8H9jSvnwP27cD+9S10G9XMFtSpUV0A 6jRfPwfUqWG8toVumpc/ko6o+8G0nDWgesIXgXALEGkK/SjOc19Hgk4aqEUP R8RTDnSWTkc6hDdVUK45spvmrUNeWSVlg7GGg7jALjUssA3NvgQ2xln0QCSa WqNqaLDaabAEiA/pUhLhvLj2r3mn3UTs5OUCrcJ9msDDSZAblVFyihY1+XW3 +zSDO1eAgS0dNeDFjl0Fx8q5pp3+Osj8Ut99xsFk6f9wqwRuXQMbNgRqYRy7 dR3c8rDpRBvjTKmZkyfUgbK9wrRS6ewdSN8AKFuuJ3QZcgMIlwHiRngS56Xl 9gqU203AsPFXm4eYxi2gQb32VuhfcV7t8xFgcBvUbT2riSBm8KG08dWf+Xj1 l3JQ7vMymLwDJsNVbAVMvhRBpKbuRRBpzd8HU3fBVJhnfPV1RO0t/dwrmHc3 5KX23Oc+yLW6PzaO1C0AiaP/1PBoG38YdGkvPJ0rB+OVlWsq27mRUn1Nlutq Mu09ZDJP1+mRnKaDqIp86dbXuvt01feCja27wYAWtcs7qbWIQU3ndiSaQtA9 R6V+ONjYzWE2zjFQb4lg0/K5WZBGGA7y5wvuex3y6PZJHkewNBVeK0gpDJS0 Qr8Kee1A6RZQopHsSkFKYbIJtyY1SZpo6QrtJhChBdgLBYmEyXwAIC6KHN2E 3QAiNMVcgrzsFi0skvaA0AXIqwCRF4FIC+iuyx0qh0BkEBTPQ143ELkORGjf H28wUn2657I6wROOs5BHl33XgFIb6J4rSCkECO0FiDXI6wdKV4FSO+ieKUjJ aqxu85M+ehbyBoDSFaBEJyWrBSlZjekIK4ZYhrxBoHQZKG0H3ZWClMKBzn6A oEM4uh+lKLUdoHu6IKVwquYPRn23PAVgdFN6CYjsFMpSQfPhnHEUjGa3aHQF +TyY74wMpEjZiWoOgOI4rGJ0bxGzoSP0MeB1EXh1Aa/8IbUCYXKU7MTaNjHe jXkgMgFE1oFIJUfEfbMLwiTb7DSqrnAqPQkcDgsnC8cjDt05Du6/Wek2gSdU U+H2YgqITEPeDMBSdGIPkDNd2J01qLEQGnlQPmWpOaBxDmj05mi4b4ZCq1Yq I9v4YnmMCYzu4yjosi9nwKFZM2jOl0zDGKBwozYDhLLxZxEInQFC/cF4TKj2 Hduktj4MnMJtbNZ6aXCmC7E14ERHaRlow8qjnmYtW2EzG2aqulE2BlsFXgOm UQ1nWVmghE81F6QUom19I/aV7tuE57aieifz6eVnDJZqZhi0FSIa4Zp/Qfwr gqAbgWUgNASwJaFsDLPZilIIIvZNt+IU6YSc4n73AlhZKG0FzVuHSr4N4ktg lG7QikZ9hegTimY9Bab2qeHtUQuhXhhCqLOIWwIbAcW+Rry90RBFRPHBJ8AA 3YV3b8o7GHgHDCyCAYoloM0UDZ427yffB/HjYGpMhUDbxqyIQpx0FuZNYBPA p2PTggmw74HteTAwCRDU+qlgrKAthD4nfhRMUbBSud6XKBg++RHAUgD1QSnS cEq8g4HsPQKCtZElGzodaO37MuBZl7FXG3Lm6WCQlkRZ0GgI1/4pCDU8oqOo cxpDAvbPpEOIFMtGV3u3RdlmnuQXoEh3bZMyT3fLNwQbQqrfB1i6mqOleJvA XgRTwcAvxYdgx/R0J0BclgFb1NqLOjkWdIFJOyt66yJEN/9aLAhsRE97pLgO bAPYbyU+CmD7gVmfYM8pZftAe3vKg40A2LCeZm/TrCplW+rk9xLaBxBDG55u CMnxYHaKkfxB4hSynE2G2dtGJ5Wy46Lkj/WkaamZe+fJL4lKWTtL/mwZNSEK Ne3V0+zNqywO3M5ak79IiAIHd+npEdmeFoQdZCd/lVA+wEDNraSZxw91YwKz O4XkbxLyo2vDtwG3S+60IPYK1kbh5O/upyUMVrE2IZYlfMYsV8P1gk+9Yoj+ 7cOKE/I9sds9ei16VMDO//Ye4z9DK+DX9YKQ70DhPctk238BCufDDA==\ \>"], ImageRangeCache->{{{0, 402.438}, {127.438, 0}} -> {-3.3979, -1.07599, \ 0.0168866, 0.0168866}}], Cell[TextData[{ StyleBox["\:6ce8\:610f", FontColor->RGBColor[1, 0, 0]], "\:ff1a\:7a4d sin x cos x \:306e\:30b0\:30e9\:30d5\:306f\:ff0c\:4e8c\:3064\ \:306e\:5024\:306e\:7a4d\:ff08\:30b0\:30e9\:30d5\:306e\:9ad8\:3055\:3092\:304b\ \:3051\:308b\:64cd\:4f5c\:ff09\:306b\:3088\:3063\:3066\:63cf\:304b\:308c\:308b\ \:3053\:3068\:306b\:6ce8\:610f\:3057\:3066\:304f\:3060\:3055\:3044\:ff0e \ \:7279\:306b", Cell[BoxData[ RowBox[{ RowBox[{"x", "=", RowBox[{"-", FractionBox["\[Pi]", "2"]}]}], ",", RowBox[{"-", FractionBox["\[Pi]", "4"]}], ",", "0", ",", FractionBox["\[Pi]", "4"], ",", FractionBox["\[Pi]", "2"]}]]], "\:306b\:304a\:3051\:308b\:30b0\:30e9\:30d5\:306e\:5024\:306b\:6ce8\:610f\ \:3057\:3066\:304f\:3060\:3055\:3044\:ff0e" }], "Text", CellChangeTimes->{{3.42656457525*^9, 3.426564588703125*^9}, { 3.431996062453125*^9, 3.43199606553125*^9}, {3.432001650765625*^9, 3.432001654828125*^9}, {3.433218984*^9, 3.43321899384375*^9}}, FontSize->18], Cell[CellGroupData[{ Cell[TextData[{ StyleBox["\:554f\:984c", FontColor->RGBColor[0, 0, 1]], "\:3000\:4e0a\:306e\:7d2b\:8272\:306e\:30b0\:30e9\:30d5\:306f \:3069\:3093\ \:306a\:5f0f\:3067\:8868\:3055\:308c\:308b\:3057\:3087\:3046\:304b\:ff0e" }], "Subsection", FontSize->18], Cell[BoxData[{ StyleBox[ RowBox[{"2", "\:500d\:89d2\:306e\:516c\:5f0f\:3088\:308a"}], FontSize->16], "\[IndentingNewLine]", StyleBox[ RowBox[{" ", Cell[TextData[{ "sin x cos x ", Cell[BoxData[ FormBox[ RowBox[{"=", RowBox[{ FractionBox["1", "2"], " ", "sin", " ", "2", "x"}]}], TraditionalForm]]] }]]}], FontSize->16]}], "Text", CellChangeTimes->{{3.49465389790625*^9, 3.494653959078125*^9}, { 3.494654010015625*^9, 3.494654015765625*^9}, {3.4946550336875*^9, 3.49465505909375*^9}}, Background->RGBColor[ 0.5882352941176471, 0.796078431372549, 0.796078431372549]], Cell[TextData[StyleBox["\:4e09\:89d2\:95a2\:6570\:306e\:4e0d\:601d\:8b70\:ff12\ ", FontSize->36, FontColor->RGBColor[0.501961, 0.25098, 0.25098]]], "Text", CellChangeTimes->{{3.494651311046875*^9, 3.494651315*^9}}, TextAlignment->Center, Background->RGBColor[1., 1., 0.615686274509804]], Cell[TextData[StyleBox["\:7a4d sin x cos x \:306e\:30b0\:30e9\:30d5\:3082\ \:3001 sin x \:306e\:30b0\:30e9\:30d5\:306e\:3088\:3046\:306a\:6ce2\:306b\ \:306a\:308a\:3001\:5f0f sin \:3092\:7528\:3044\:3066\:8868\:3055\:308c\:308b\ \:3088\:3046\:306b\:306a\:308b\:ff0e", FontSize->24, FontColor->RGBColor[1, 0, 0]]], "Text", CellChangeTimes->{{3.433214038421875*^9, 3.4332140516875*^9}, 3.433214114625*^9}] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[StyleBox["\:30d5\:30fc\:30ea\:30a8\:7d1a\:6570\:5c55\:958b", \ "Section", FontSize->24]], "Section", CellChangeTimes->{{3.494651832859375*^9, 3.49465184690625*^9}, { 3.494653112578125*^9, 3.494653123203125*^9}}, Background->RGBColor[0.501961, 1, 1]], Cell[CellGroupData[{ Cell[TextData[{ "\:4e00\:822c\:306b\:548c\n\n ", Cell[BoxData[ RowBox[{ RowBox[{"P", "[", RowBox[{"n", ",", "x"}], "]"}], "=", RowBox[{ RowBox[{ RowBox[{"2", " ", FractionBox[ RowBox[{"sin", "[", RowBox[{"1", "x"}], "]"}], "1"]}], "-", FractionBox[ RowBox[{"2", RowBox[{"sin", "[", RowBox[{"2", " ", "x"}], "]"}]}], "2"], "+", FractionBox[ RowBox[{"2", " ", RowBox[{"sin", "[", RowBox[{"3", " ", "x"}], "]"}]}], RowBox[{"3", " "}]], "+", "\[CenterEllipsis]", "+", FractionBox[ RowBox[{"2", SuperscriptBox[ RowBox[{"(", RowBox[{"-", "1"}], ")"}], RowBox[{"n", "-", "1"}]], RowBox[{"sin", "[", "nx", "]"}]}], "n"]}], "=", RowBox[{"2", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"k", "=", "1"}], "n"], FractionBox[ RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"-", "1"}], ")"}], RowBox[{"k", "-", "1"}]], RowBox[{"sin", "[", "kx", "]"}]}], "k"]}]}]}]}]]], "\:ff08\:8d64)\n \:3000\n \:3092\:8003\:3048\:3066\:ff0c", Cell[BoxData[ RowBox[{"n", " "}]]], " \:3092\:5927\:304d\:304f\:3057\:3066\:3044\:304d\:307e\:3059\:ff0e", Cell[BoxData[ FormBox[ RowBox[{ RowBox[{"n", "=", "1"}], ",", "2", ",", "\[CenterEllipsis]", ",", "20"}], TraditionalForm]]], " \:306e\:5834\:5408\:306b\:ff0c\:30a2\:30cb\:30e1\:30fc\:30b7\:30e7\:30f3\ \:3068\:3057\:3066\:89b3\:5bdf\:3057\:307e\:3059\:ff0e\n ", StyleBox["\:ff08\:6700\:521d\:306e\:4e09\:89d2\:30dc\:30bf\:30f3\:3092\:30af\ \:30ea\:30c3\:30af\:3057\:3066\:ff0c\:4e0b\:5411\:304d\:306b\:3057\:3066\:304f\ \:3060\:3055\:3044\:ff09", FontSize->14, FontColor->RGBColor[1., 0.5019607843137255, 0.25098039215686274`]], "\:3000\:3000\:3000\:3000\:3000\:3000\:3000\:3000\:3000\:3000\:3000\:3000\ \:3000\:3000\:3000\:3000" }], "Subsubsection", CellChangeTimes->{{3.4332203314375*^9, 3.433220359390625*^9}, { 3.4332216598125*^9, 3.4332216661875*^9}, {3.4338200945*^9, 3.433820106640625*^9}, {3.433820227765625*^9, 3.433820276921875*^9}, { 3.433820330359375*^9, 3.43382035309375*^9}}, FontSize->18], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Clear", "[", RowBox[{"a", ",", "F"}], "]"}], ";", RowBox[{ RowBox[{"a", "[", RowBox[{"k_", ",", "x_"}], "]"}], ":=", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"-", "1"}], ")"}], "^", RowBox[{"{", RowBox[{"k", "-", "1"}], "}"}]}], "*", RowBox[{ RowBox[{"Sin", "[", RowBox[{"k", "*", "x"}], "]"}], "/", "k"}]}]}], ";", RowBox[{"Clear", "[", "S", "]"}], ";", RowBox[{ RowBox[{"P", "[", RowBox[{"n_", ",", "x_"}], "]"}], ":=", RowBox[{"2", "*", RowBox[{"Sum", "[", RowBox[{ RowBox[{"a", "[", RowBox[{"k", ",", "x"}], "]"}], ",", RowBox[{"{", RowBox[{"k", ",", "1", ",", "n"}], "}"}]}], "]"}]}]}], ";", RowBox[{ RowBox[{"F", "[", "x_", "]"}], ":=", RowBox[{"x", "/;", RowBox[{ RowBox[{"-", "\[Pi]"}], "<", "x", "<", "\[Pi]"}]}]}], ";", RowBox[{ RowBox[{"F", "[", "x_", "]"}], ":=", RowBox[{ RowBox[{"x", "+", RowBox[{"2", "\[Pi]"}]}], "/;", RowBox[{ RowBox[{ RowBox[{"-", "3"}], "\[Pi]"}], "<", "x", "<", RowBox[{"-", "\[Pi]"}]}]}]}], ";", RowBox[{ RowBox[{"F", "[", "x_", "]"}], ":=", RowBox[{ RowBox[{"x", "+", RowBox[{"4", "\[Pi]"}]}], "/;", RowBox[{ RowBox[{ RowBox[{"-", "5"}], "\[Pi]"}], "<", "x", "<", RowBox[{ RowBox[{"-", "3"}], "\[Pi]"}]}]}]}], ";", RowBox[{ RowBox[{"F", "[", "x_", "]"}], ":=", RowBox[{ RowBox[{"x", "-", RowBox[{"2", "\[Pi]"}]}], "/;", RowBox[{"\[Pi]", "<", "x", "<", RowBox[{"3", "\[Pi]"}]}]}]}], ";", RowBox[{ RowBox[{"F", "[", "x_", "]"}], ":=", RowBox[{ RowBox[{"x", "-", RowBox[{"4", "\[Pi]"}]}], "/;", RowBox[{ RowBox[{"3", "\[Pi]"}], "<", "x", "<", RowBox[{"5", "\[Pi]"}]}]}]}], ";", RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"F", "[", "x", "]"}], ",", RowBox[{"Evaluate", "[", RowBox[{"P", "[", RowBox[{"n", ",", "x"}], "]"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{ RowBox[{"-", "5"}], "\[Pi]"}], ",", RowBox[{"5", "\[Pi]"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "5"}], "\[Pi]"}], ",", RowBox[{"5", "\[Pi]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "3.5"}], ",", "3.5"}], "}"}]}], "}"}]}], ",", RowBox[{"AspectRatio", "\[Rule]", "Automatic"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Hue", "[", "0.6", "]"}], ",", RowBox[{"Hue", "[", "0.0", "]"}]}], "}"}]}], ",", RowBox[{"Ticks", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "5"}], "\[Pi]"}], ",", RowBox[{ RowBox[{"-", "4"}], "\[Pi]"}], ",", RowBox[{ RowBox[{"-", "3"}], "\[Pi]"}], ",", RowBox[{ RowBox[{"-", "2"}], "\[Pi]"}], ",", RowBox[{"-", "\[Pi]"}], ",", "0", ",", "\[Pi]", ",", RowBox[{"2", "\[Pi]"}], ",", RowBox[{"3", "\[Pi]"}], ",", RowBox[{"4", "\[Pi]"}], ",", RowBox[{"5", "\[Pi]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "\[Pi]"}], ",", "0", ",", "\[Pi]"}], "}"}]}], "}"}]}], ",", RowBox[{"ImageSize", "\[Rule]", "600"}]}], "]"}], ",", RowBox[{"{", RowBox[{"n", ",", "1", ",", "20"}], "}"}], ",", RowBox[{"SaveDefinitions", "\[Rule]", "True"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.43321272584375*^9, 3.433212775203125*^9}, { 3.4332130125*^9, 3.433213013109375*^9}, {3.433213096203125*^9, 3.433213105828125*^9}}], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`n$$ = 1, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[$CellContext`n$$], 1, 20}}, Typeset`size$$ = {600., {63., 68.}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = False, $CellContext`n$2091$$ = 0}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`n$$ = 1}, "ControllerVariables" :> { Hold[$CellContext`n$$, $CellContext`n$2091$$, 0]}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Plot[{ $CellContext`F[$CellContext`x], Evaluate[ $CellContext`P[$CellContext`n$$, $CellContext`x]]}, \ {$CellContext`x, (-5) Pi, 5 Pi}, PlotRange -> {{(-5) Pi, 5 Pi}, {-3.5, 3.5}}, AspectRatio -> Automatic, PlotStyle -> { Hue[0.6], Hue[0.]}, Ticks -> {{(-5) Pi, (-4) Pi, (-3) Pi, (-2) Pi, -Pi, 0, Pi, 2 Pi, 3 Pi, 4 Pi, 5 Pi}, {-Pi, 0, Pi}}, ImageSize -> 600], "Specifications" :> {{$CellContext`n$$, 1, 20}}, "Options" :> {}, "DefaultOptions" :> {}], ImageSizeCache->{647., {108., 113.}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, Initialization:>({$CellContext`F[ Pattern[$CellContext`x, Blank[]]] := Condition[$CellContext`x, -Pi < $CellContext`x < Pi], $CellContext`F[ Pattern[$CellContext`x, Blank[]]] := Condition[$CellContext`x + 2 Pi, (-3) Pi < $CellContext`x < -Pi], $CellContext`F[ Pattern[$CellContext`x, Blank[]]] := Condition[$CellContext`x + 4 Pi, (-5) Pi < $CellContext`x < (-3) Pi], $CellContext`F[ Pattern[$CellContext`x, Blank[]]] := Condition[$CellContext`x - 2 Pi, Pi < $CellContext`x < 3 Pi], $CellContext`F[ Pattern[$CellContext`x, Blank[]]] := Condition[$CellContext`x - 4 Pi, 3 Pi < $CellContext`x < 5 Pi], $CellContext`P[ Pattern[$CellContext`n, Blank[]], Pattern[$CellContext`x, Blank[]]] := 2 Sum[ $CellContext`a[$CellContext`k, $CellContext`x], {$CellContext`k, 1, $CellContext`n}], $CellContext`a[ Pattern[$CellContext`k, Blank[]], Pattern[$CellContext`x, Blank[]]] := (-1)^{$CellContext`k - 1} ( Sin[$CellContext`k $CellContext`x]/$CellContext`k)}; Typeset`initDone$$ = True), SynchronousInitialization->True, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{{3.433212751890625*^9, 3.433212793421875*^9}, { 3.43321301403125*^9, 3.433213029625*^9}, {3.433213107640625*^9, 3.433213117375*^9}, {3.433215047484375*^9, 3.433215064203125*^9}, { 3.49465356653125*^9, 3.494653571546875*^9}}] }, Open ]], Cell[TextData[{ StyleBox["\:89b3\:5bdf", FontColor->RGBColor[1, 0, 0]], "\:ff1a\:548c ", Cell[BoxData[ RowBox[{"P", "[", RowBox[{"n", ",", "x"}], "]"}]]], " \:306e\:30b0\:30e9\:30d5\:306f\:ff0c", Cell[BoxData["n"]], " \:3092\:5927\:304d\:304f\:3057\:3066\:3044\:304f\:3068\:ff0c\:306e\:3053\ \:304e\:308a\:6ce2\:306e\:30b0\:30e9\:30d5\:306b\:8fd1\:3065\:304f\:3088\:3046\ \:306b\:63cf\:304b\:308c\:ff0c ", Cell[BoxData["n"]], " \:306e\:5024\:304c\:5927\:304d\:304f\:306a\:308b\:307b\:3069\:3088\:308a\ \:8fd1\:3044\:30b0\:30e9\:30d5\:306b\:306a\:3063\:3066\:3044\:304d\:307e\:3059\ \:ff0e" }], "Text", FontSize->18], Cell[TextData[StyleBox["\:4e09\:89d2\:95a2\:6570\:306e\:4e0d\:601d\:8b70\:ff13\ ", FontSize->36, FontColor->RGBColor[0.501961, 0.25098, 0.25098]]], "Text", CellChangeTimes->{{3.494651311046875*^9, 3.494651315*^9}, { 3.494651932828125*^9, 3.494651933625*^9}, {3.494652232640625*^9, 3.494652233859375*^9}, {3.494652354765625*^9, 3.494652355734375*^9}, { 3.4946528794375*^9, 3.49465288384375*^9}, {3.494653495171875*^9, 3.494653496140625*^9}}, TextAlignment->Center, Background->RGBColor[1., 1., 0.5490196078431373]], Cell[TextData[StyleBox["\:306e\:3053\:304e\:308a\:306e\:3088\:3046\:306a\:5f62\ \:3092\:3057\:305f\:30b0\:30e9\:30d5\:304c\:ff0c\:4e09\:89d2\:95a2\:6570\:3092\ \:305f\:304f\:3055\:3093\:30d7\:30e9\:30b9\:3059\:308b\:3053\:3068\:3067\:8868\ \:3059\:3053\:3068\:304c\:3067\:304d\:308b ", FontSize->24, FontColor->RGBColor[1, 0, 0]]], "Text", CellChangeTimes->{{3.433214038421875*^9, 3.4332140516875*^9}, 3.433214114625*^9, {3.49465195015625*^9, 3.494651953046875*^9}, { 3.494651983984375*^9, 3.494651989734375*^9}, {3.494652262921875*^9, 3.4946523121875*^9}, {3.4946523799375*^9, 3.4946524115*^9}, { 3.49465290340625*^9, 3.494652954875*^9}, {3.49465299075*^9, 3.49465302875*^9}, {3.4946535081875*^9, 3.494653553640625*^9}}], Cell[TextData[StyleBox["\:4e09\:89d2\:95a2\:6570 sin x \:3092\:7528\:3044\ \:3066\:ff0c\:305d\:306e\:30b0\:30e9\:30d5\:306e\:5468\:671f\:3084\:5927\:304d\ \:3055\:3092\:3046\:307e\:304f\:8abf\:6574\:3057\:3066\:548c\:3092\:8003\:3048\ \:3066\:3044\:304f\:3068\:ff0c\:3044\:308d\:3044\:308d\:306a\:30b0\:30e9\:30d5\ \:306b\:8fd1\:3065\:3051\:3066\:3044\:304f\:3053\:3068\:304c\:3067\:304d\:307e\ \:3059\:ff0e", FontSize->24, FontColor->RGBColor[1, 0, 1]]], "Text", CellChangeTimes->{{3.43322014759375*^9, 3.433220155375*^9}}] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[TextData[StyleBox["\:4e09\:89d2\:95a2\:6570\:306e\:52a0\:6cd5\:5b9a\:7406\ ", "Section", FontSize->24]], "Section", CellChangeTimes->{{3.494651832859375*^9, 3.49465184690625*^9}}, Background->RGBColor[0.501961, 1, 1]], Cell[TextData[StyleBox["\:307e\:305a\:306f\:898b\:3066\:307f\:3088\:3046", \ "Section"]], "Text", CellChangeTimes->{{3.43322096909375*^9, 3.433221011015625*^9}, { 3.43322110378125*^9, 3.433221154359375*^9}, {3.494651796984375*^9, 3.49465182628125*^9}}, FontSize->18], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Clear", "[", "g1", "]"}], ";", RowBox[{ RowBox[{"g1", "[", RowBox[{"x_", ",", "t_"}], "]"}], ":=", RowBox[{"Plot", "[", RowBox[{ StyleBox[ RowBox[{"Sin", "[", RowBox[{"x", "+", "t"}], "]"}], FontColor->RGBColor[1, 0, 0]], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{ RowBox[{"-", "2"}], "Pi"}], ",", RowBox[{"2", "Pi"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "2"}], "\[Pi]"}], ",", RowBox[{"2", "\[Pi]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.2"}], ",", "1.2"}], "}"}]}], "}"}]}], ",", RowBox[{"AspectRatio", "\[Rule]", "Automatic"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"Hue", "[", "0.0", "]"}]}], ",", RowBox[{"Ticks", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "2"}], "\[Pi]"}], ",", RowBox[{"-", "\[Pi]"}], ",", "0", ",", "\[Pi]", ",", RowBox[{"2", "\[Pi]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "}"}]}], ",", RowBox[{"ImageSize", "\[Rule]", "600"}]}], "]"}]}], ";", RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"g1", "[", RowBox[{"x", ",", "t"}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "10"}], "}"}], ",", RowBox[{"SaveDefinitions", "\[Rule]", "True"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.433220490390625*^9, 3.433220531921875*^9}, { 3.4332206884375*^9, 3.4332206916875*^9}, {3.433220816375*^9, 3.43322082178125*^9}, {3.49472709690625*^9, 3.494727097484375*^9}}], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`t$$ = 0., Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[$CellContext`t$$], 0, 10}}, Typeset`size$$ = {600., {54., 58.}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = False, $CellContext`t$693$$ = 0}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`t$$ = 0}, "ControllerVariables" :> { Hold[$CellContext`t$$, $CellContext`t$693$$, 0]}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> $CellContext`g1[$CellContext`x, $CellContext`t$$], "Specifications" :> {{$CellContext`t$$, 0, 10}}, "Options" :> {}, "DefaultOptions" :> {}], ImageSizeCache->{647., {99., 104.}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, Initialization:>({$CellContext`g1[ Pattern[$CellContext`x, Blank[]], Pattern[$CellContext`t, Blank[]]] := Plot[ Sin[$CellContext`x + $CellContext`t], {$CellContext`x, (-2) Pi, 2 Pi}, PlotRange -> {{(-2) Pi, 2 Pi}, {-1.2, 1.2}}, AspectRatio -> Automatic, PlotStyle -> Hue[0.], Ticks -> {{(-2) Pi, -Pi, 0, Pi, 2 Pi}, {-1, 1}}, ImageSize -> 600]}; Typeset`initDone$$ = True), SynchronousInitialization->True, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{{3.433220516828125*^9, 3.433220543734375*^9}, 3.433220694984375*^9, 3.433220825546875*^9, {3.4947271*^9, 3.494727106078125*^9}}] }, Open ]], Cell[TextData[{ StyleBox["\:6ce8\:610f", FontColor->RGBColor[1, 0, 0]], "\:ff1a", Cell[BoxData[ RowBox[{"sin", " ", RowBox[{"(", RowBox[{"x", "+", "t"}], ")"}]}]]], " \:306e\:30b0\:30e9\:30d5\:306f\:ff0c", Cell[BoxData["t"]], " \:3092\:5927\:304d\:304f\:3057\:3066\:3044\:304f\:3068\:ff0c", Cell[BoxData[ RowBox[{"sin", " ", "x", " "}]]], " \:306e\:30b0\:30e9\:30d5\:304c\:5de6\:306b\:79fb\:52d5\:3059\:308b\:3088\ \:3046\:306b\:63cf\:304b\:308c\:308b\:3053\:3068\:306b\:6ce8\:610f\:3057\:3066\ \:304f\:3060\:3055\:3044\:ff0e\:3053\:308c\:3092 ", Cell[BoxData[ RowBox[{ RowBox[{"t", "=", "1"}], ",", "2", ",", "\[CenterEllipsis]"}]]], " \:3068\:30a2\:30cb\:30e1\:30fc\:30b7\:30e7\:30f3\:3059\:308b\:3053\:3068\ \:3067\n\:6b63\:5f26\:6ce2\:3068\:547c\:3070\:308c\:308b", StyleBox["\:9032\:884c\:6ce2", FontColor->RGBColor[1, 0, 0]], "\:304c\:5b9f\:73fe\:3055\:308c\:307e\:3059\:ff0e" }], "Text", FontSize->18], Cell[TextData[StyleBox["\:4e09\:89d2\:95a2\:6570\:306e\:4e0d\:601d\:8b70\:ff14\ ", FontSize->36, FontColor->RGBColor[0.501961, 0.25098, 0.25098]]], "Text", CellChangeTimes->{{3.494651311046875*^9, 3.494651315*^9}, { 3.494651932828125*^9, 3.494651933625*^9}, {3.494653595625*^9, 3.494653597125*^9}}, TextAlignment->Center, Background->RGBColor[1., 1., 0.592156862745098]], Cell[TextData[StyleBox["\:95a2\:6570 sin (x+t) \:306e\:30b0\:30e9\:30d5\:3092\ \:3001 t \:306b\:3064\:3044\:3066\:540c\:3058\:72b6\:614b\:ff08\:901f\:5ea6\ \:ff09\:3067\:5909\:5316\:3055\:305b\:308b\:3068\:5de6\:306b\:79fb\:52d5\:3059\ \:308b\:6ce2\:306b\:306a\:308a\:307e\:3059 ", FontSize->24, FontColor->RGBColor[1, 0, 0]]], "Text", CellChangeTimes->{{3.433214038421875*^9, 3.4332140516875*^9}, 3.433214114625*^9, {3.49465195015625*^9, 3.494651953046875*^9}, { 3.494651983984375*^9, 3.494651989734375*^9}}], Cell[TextData[StyleBox["\:4ee5\:4e0b\:306e\:753b\:9762\:3067\:4e0a\:3068\:540c\ \:3058\:3088\:3046\:306b\:8a66\:307f\:3066\:304f\:3060\:3055\:3044\:ff0e", FontSize->18, FontColor->RGBColor[0.5019607843137255, 0., 0.]]], "Text", CellChangeTimes->{{3.43322096909375*^9, 3.433221011015625*^9}, { 3.43322110378125*^9, 3.433221154359375*^9}, {3.433221201*^9, 3.433221233875*^9}}, FontSize->18], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Clear", "[", "g2", "]"}], ";", RowBox[{ RowBox[{"g2", "[", RowBox[{"x_", ",", "t_"}], "]"}], ":=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"Sin", "[", RowBox[{"x", "-", "t"}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{ RowBox[{"-", "2"}], "Pi"}], ",", RowBox[{"2", "Pi"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "2"}], "\[Pi]"}], ",", RowBox[{"2", "\[Pi]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.2"}], ",", "1.2"}], "}"}]}], "}"}]}], ",", RowBox[{"AspectRatio", "\[Rule]", "Automatic"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"Hue", "[", "0.0", "]"}]}], ",", RowBox[{"Ticks", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "2"}], "\[Pi]"}], ",", RowBox[{"-", "\[Pi]"}], ",", "0", ",", "\[Pi]", ",", RowBox[{"2", "\[Pi]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "}"}]}], ",", RowBox[{"ImageSize", "\[Rule]", "600"}]}], "]"}]}], ";", RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"g2", "[", RowBox[{"x", ",", "t"}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "10"}], "}"}], ",", RowBox[{"SaveDefinitions", "\[Rule]", "True"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.433220613671875*^9, 3.433220670515625*^9}, { 3.43322083071875*^9, 3.43322083684375*^9}, {3.494727115859375*^9, 3.494727116359375*^9}}], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`t$$ = 0, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[$CellContext`t$$], 0, 10}}, Typeset`size$$ = {600., {54., 58.}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = False, $CellContext`t$1099$$ = 0}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`t$$ = 0}, "ControllerVariables" :> { Hold[$CellContext`t$$, $CellContext`t$1099$$, 0]}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> $CellContext`g2[$CellContext`x, $CellContext`t$$], "Specifications" :> {{$CellContext`t$$, 0, 10}}, "Options" :> {}, "DefaultOptions" :> {}], ImageSizeCache->{647., {99., 104.}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, Initialization:>({$CellContext`g2[ Pattern[$CellContext`x, Blank[]], Pattern[$CellContext`t, Blank[]]] := Plot[ Sin[$CellContext`x - $CellContext`t], {$CellContext`x, (-2) Pi, 2 Pi}, PlotRange -> {{(-2) Pi, 2 Pi}, {-1.2, 1.2}}, AspectRatio -> Automatic, PlotStyle -> Hue[0.], Ticks -> {{(-2) Pi, -Pi, 0, Pi, 2 Pi}, {-1, 1}}, ImageSize -> 600]}; Typeset`initDone$$ = True), SynchronousInitialization->True, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{{3.43322063871875*^9, 3.4332206821875*^9}, 3.433220839421875*^9, 3.494727122328125*^9}] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "\:ff08\:ff11\:ff09\:4e8c\:3064\:306e\:6b63\:5f26\:6ce2 ", Cell[BoxData[ RowBox[{"sin", " ", RowBox[{"(", RowBox[{"x", "-", "t"}], ")"}]}]]], " \:3068 ", Cell[BoxData[ RowBox[{"sin", " ", RowBox[{"(", RowBox[{"x", "+", "t"}], ")"}]}]]], " \:3092\:5408\:6210\:3057\:307e\:3059\:ff08\:548c\:3092\:8003\:3048\:307e\ \:3059\:ff09\:ff0e\:3000" }], "Subsection", FontSize->18, Background->RGBColor[1, 0.501961, 0.25098]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Clear", "[", "g", "]"}], ";", RowBox[{ RowBox[{"h", "[", RowBox[{"x_", ",", "t_"}], "]"}], ":=", RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{"Sin", "[", RowBox[{"x", "+", "t"}], "]"}], "+", RowBox[{"Sin", "[", RowBox[{"x", "-", "t"}], "]"}]}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{ RowBox[{"-", "2"}], "Pi"}], ",", RowBox[{"2", "Pi"}]}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "2"}], "\[Pi]"}], ",", RowBox[{"2", "\[Pi]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], ",", RowBox[{"AspectRatio", "\[Rule]", "Automatic"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"Hue", "[", "0.0", "]"}]}], ",", RowBox[{"Ticks", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"-", "2"}], "\[Pi]"}], ",", RowBox[{"-", "\[Pi]"}], ",", "0", ",", "\[Pi]", ",", RowBox[{"2", "\[Pi]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "}"}]}], ",", RowBox[{"ImageSize", "\[Rule]", "600"}]}], "]"}]}], ";", RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"h", "[", RowBox[{"x", ",", "t"}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "6", ",", "0.3"}], "}"}], ",", RowBox[{"SaveDefinitions", "\[Rule]", "True"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.433220702546875*^9, 3.433220738265625*^9}}], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`t$$ = 0, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[$CellContext`t$$], 0, 6, 0.3}}, Typeset`size$$ = { 600., {97., 101.}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = False, $CellContext`t$532$$ = 0}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`t$$ = 0}, "ControllerVariables" :> { Hold[$CellContext`t$$, $CellContext`t$532$$, 0]}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> $CellContext`h[$CellContext`x, $CellContext`t$$], "Specifications" :> {{$CellContext`t$$, 0, 6, 0.3}}, "Options" :> {}, "DefaultOptions" :> {}], ImageSizeCache->{647., {142., 147.}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, Initialization:>({$CellContext`h[ Pattern[$CellContext`x, Blank[]], Pattern[$CellContext`t, Blank[]]] := Plot[Sin[$CellContext`x + $CellContext`t] + Sin[$CellContext`x - $CellContext`t], {$CellContext`x, (-2) Pi, 2 Pi}, PlotRange -> {{(-2) Pi, 2 Pi}, {-2, 2}}, AspectRatio -> Automatic, PlotStyle -> Hue[0.], Ticks -> {{(-2) Pi, -Pi, 0, Pi, 2 Pi}, {-2, 2}}, ImageSize -> 600]}; Typeset`initDone$$ = True), SynchronousInitialization->True, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{{3.433220726578125*^9, 3.433220739421875*^9}}] }, Open ]], Cell[TextData[{ StyleBox["\:89b3\:5bdf", FontColor->RGBColor[1, 0, 0]], "\:ff1a\:4eca\:5ea6\:306f\:4e0a\:4e0b\:306e\:300c\:52d5\:304d\:300d\:306b\ \:5909\:5316\:3057\:307e\:3057\:305f\:ff0e\:3000\:3000\:3000\:3000\:3000\:3000\ \:3000" }], "Text", FontSize->18], Cell[TextData[StyleBox["\:4e09\:89d2\:95a2\:6570\:306e\:4e0d\:601d\:8b70\:ff15\ ", FontSize->36, FontColor->RGBColor[0.501961, 0.25098, 0.25098]]], "Text", CellChangeTimes->{{3.494651311046875*^9, 3.494651315*^9}, { 3.494651932828125*^9, 3.494651933625*^9}, {3.494652232640625*^9, 3.494652233859375*^9}, {3.494653602390625*^9, 3.494653603390625*^9}}, TextAlignment->Center, Background->RGBColor[1., 1., 0.5019607843137255]], Cell[TextData[StyleBox["\:5de6\:306b\:79fb\:52d5\:3059\:308b\:6ce2\:3068\:53f3\ \:306b\:79fb\:52d5\:3059\:308b\:6ce2\:3092\:5408\:6210\:3059\:308b\:3068\:4e0a\ \:4e0b\:306b\:79fb\:52d5\:3059\:308b\:6ce2\:306b\:306a\:308a\:307e\:3059 ", FontSize->24, FontColor->RGBColor[1, 0, 0]]], "Text", CellChangeTimes->{{3.433214038421875*^9, 3.4332140516875*^9}, 3.433214114625*^9, {3.49465195015625*^9, 3.494651953046875*^9}, { 3.494651983984375*^9, 3.494651989734375*^9}, {3.494652262921875*^9, 3.4946523121875*^9}, {3.4946524195*^9, 3.494652423578125*^9}}], Cell[TextData[{ StyleBox["\:6ce8\:610f", FontColor->RGBColor[1, 0, 0]], "\:ff1a", "\:3053\:3053\:3067\:6570\:5b66\:7684\:306b\:548c\:3092\:8003\:3048\:307e\ \:3059\:ff0e\:3053\:306e\:3068\:304d\:ff0c\:9ad8\:6821\:3067\:5b66\:3093\:3060\ \:548c\:306e\:516c\:5f0f\:3000\:3000\:3000\:3000\:3000\:3000\:3000\:3000" }], "Text", FontSize->18], Cell[TextData[{ "\:3000\:3000\:3000\:3000\:3000\:3000\:3000\:3000", Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"sin", " ", "A"}], "+", RowBox[{"sin", " ", "B"}]}], "=", RowBox[{"2", "sin", FractionBox[ RowBox[{"A", "+", "B"}], "2"], "cos", FractionBox[ RowBox[{"A", "-", "B"}], "2"], Cell[""]}]}]]] }], "Text", CellFrame->True, FontSize->18, Background->GrayLevel[0.833326]], Cell["\:3092\:9069\:7528\:3059\:308b\:3068\:ff0c\:3000\:3000\:3000\:3000\:3000\ \:3000\:3000", "Text", FontSize->18], Cell[TextData[{ "\:3000\:3000\:3000\:3000\:3000\:3000\:3000\:3000", Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"sin", RowBox[{"(", RowBox[{"x", "+", "t"}], ")"}]}], "+", RowBox[{"sin", " ", RowBox[{"(", RowBox[{"x", "-", "t"}], ")"}]}]}], "=", RowBox[{"2", "sin", " ", "x", " ", "cos", " ", "t", Cell[""]}]}]]] }], "Text", CellFrame->True, FontSize->18, Background->GrayLevel[0.833326]], Cell[TextData[{ "\:3068\:306a\:308a\:ff0c", Cell[BoxData[ RowBox[{"sin", " ", "x", " "}]]], "\:306e\:5927\:304d\:3055\:3092 ", Cell[BoxData["2"]], " \:500d\:306b\:3057\:305f\:6ce2\:5f62 ", Cell[BoxData[ RowBox[{"2", "sin", " ", "x", " "}]]], "\:304c\:4e0a\:4e0b\:306b\:7e2e\:5c0f\:62e1\:5927\:3092\:7e70\:308a\:8fd4\ \:3059\:52d5\:304d\:306b\:5909\:5316\:3057\:307e\:3059\:ff0e\:3000\:3000\:3000" }], "Text", FontSize->18], Cell[TextData[{ StyleBox["\:3053\:306e\:3088\:3046\:306b\:ff0c\:4e8c\:3064\:306e\:5de6\:53f3\ \:306b\:79fb\:52d5\:3059\:308b\:9032\:884c\:6ce2\:3092\:5408\:6210\:3059\:308b\ \:ff08\:548c\:3092\:3068\:308b\:ff09\:3068\:ff0c\:4e0a\:4e0b\:306b\:79fb\:52d5\ \:3059\:308b\:6ce2\:3078\:3068\:5909\:5316\:3057\:307e\:3059\:ff0e\:70b9 ", FontSize->24, FontColor->RGBColor[1, 0, 1]], Cell[BoxData[ RowBox[{"k\[Pi]", " "}]], FontSize->24, FontColor->RGBColor[1, 0, 1]], StyleBox["\:ff08", FontSize->24, FontColor->RGBColor[1, 0, 1]], Cell[BoxData["k"], FontSize->24, FontColor->RGBColor[1, 0, 1]], StyleBox[" \ \:306f\:6574\:6570\:ff09\:306f\:52d5\:304d\:307e\:305b\:3093\:ff0e\:3053\:306e\ \:3088\:3046\:306a\:6ce2\:3092\:5b9a\:5728\:6ce2\:3068\:3044\:3044\:307e\:3059\ \:ff0e", FontSize->24, FontColor->RGBColor[1, 0, 1]] }], "Text", FontSize->18] }, Closed]], Cell[CellGroupData[{ Cell["\:ff08\:ff12\:ff09\:52a0\:6cd5\:516c\:5f0f\:3068\:306e\:95a2\:9023\:ff0e\ \:3000", "Subsection", FontSize->18, Background->RGBColor[1, 0.501961, 0.25098]], Cell["\:52a0\:6cd5\:516c\:5f0f\:306f", "Text", FontSize->18], Cell[TextData[{ "\:3000\:3000\:3000\:3000\:3000\:3000\:3000\:3000", Cell[BoxData[ RowBox[{ RowBox[{"sin", " ", RowBox[{"(", RowBox[{"A", "+", "B"}], ")"}]}], "=", RowBox[{ RowBox[{"sin", " ", "A", " ", "cos", " ", "B"}], " ", "+", RowBox[{"cos", " ", "A", " ", "sin", " ", "B", Cell[""]}]}]}]]] }], "Text", CellFrame->True, FontSize->18, Background->GrayLevel[0.833326]], Cell[TextData[{ "\:3068\:8868\:3055\:308c\:307e\:3059\:ff0e\:3053\:3053\:3067 ", Cell[BoxData[ RowBox[{"A", "=", "x", " "}]]], ", ", Cell[BoxData[ RowBox[{"B", "=", "t", " "}]]], "\:3068\:3059\:308b\:3068\:3000\:3000\:3000\:3000\:3000\:3000\:3000\:3000" }], "Text", FontSize->18], Cell[TextData[{ "\:3000\:3000\:3000\:3000\:3000\:3000\:3000\:3000", Cell[BoxData[ RowBox[{ RowBox[{"sin", " ", RowBox[{"(", RowBox[{"x", "+", "t"}], ")"}]}], "=", RowBox[{ RowBox[{"sin", " ", "x", " ", "cos", " ", "t"}], " ", "+", RowBox[{"cos", " ", "x", " ", "sin", " ", "t", Cell[""]}]}]}]]] }], "Text", CellFrame->True, FontSize->18, Background->GrayLevel[0.833326]], Cell[TextData[{ "\:3068\:306a\:308a\:307e\:3059\:ff0e", Cell[BoxData[ RowBox[{ RowBox[{"t", "=", "1"}], ",", "2", ",", "3", ",", " ", "\[CenterEllipsis]"}]]], " \:3068\:3059\:308b\:3068\:ff0c\:3069\:306e\:3088\:3046\:306a\:6ce2\:52d5\ \:73fe\:8c61\:304c\:898b\:3089\:308c\:308b\:3067\:3057\:3087\:3046\:304b\:ff0e\ \n\:307e\:305a\:ff0c", Cell[BoxData[ RowBox[{"sin", " ", "x", " ", "cos", " ", "t"}]]], ", ", Cell[BoxData[ RowBox[{"cos", " ", "x", " ", "sin", " ", "t"}]]], " \:306e\:52d5\:304d\:3092\:898b\:3066\:307f\:307e\:3057\:3087\:3046\:ff0e\ \:3000\:3000\:3000\:3000\:3000\:3000" }], "Text", FontSize->18], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Clear", "[", "G1", "]"}], ";", RowBox[{ RowBox[{"G1", "[", RowBox[{"t_", ",", "k_"}], "]"}], ":=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Sin", "[", "x", "]"}], RowBox[{"Cos", "[", "t", "]"}]}], ",", RowBox[{ RowBox[{"Cos", "[", "x", "]"}], " ", RowBox[{"Sin", "[", "t", "]"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "\[Pi]"}], ",", "\[Pi]"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "\[Pi]"}], ",", "\[Pi]"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "}"}]}], ",", RowBox[{"AspectRatio", "\[Rule]", "Automatic"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Hue", "[", "0.4", "]"}], ",", RowBox[{"Hue", "[", "0.6", "]"}]}], "}"}]}], ",", RowBox[{"Ticks", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "\[Pi]"}], ",", "0", ",", "\[Pi]"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.2"}], ",", "1.2"}], "}"}]}], "}"}]}], ",", RowBox[{"ImageSize", "\[Rule]", "600"}]}], "]"}]}], ";", RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"G1", "[", RowBox[{"t", ",", "x"}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", RowBox[{"4", "\[Pi]"}]}], "}"}], ",", RowBox[{"SaveDefinitions", "\[Rule]", "True"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.43322074915625*^9, 3.433220791*^9}, { 3.494739353703125*^9, 3.494739361984375*^9}}], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`t$$ = 0, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[$CellContext`t$$], 0, 4 Pi}}, Typeset`size$$ = {600., {92., 97.}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = False, $CellContext`t$790$$ = 0}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`t$$ = 0}, "ControllerVariables" :> { Hold[$CellContext`t$$, $CellContext`t$790$$, 0]}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> $CellContext`G1[$CellContext`t$$, $CellContext`x], "Specifications" :> {{$CellContext`t$$, 0, 4 Pi}}, "Options" :> {}, "DefaultOptions" :> {}], ImageSizeCache->{647., {150., 155.}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, Initialization:>({$CellContext`G1[ Pattern[$CellContext`t, Blank[]], Pattern[$CellContext`k, Blank[]]] := Plot[{Sin[$CellContext`x] Cos[$CellContext`t], Cos[$CellContext`x] Sin[$CellContext`t]}, {$CellContext`x, -Pi, Pi}, PlotRange -> {{-Pi, Pi}, {-1, 1}}, AspectRatio -> Automatic, PlotStyle -> { Hue[0.4], Hue[0.6]}, Ticks -> {{-Pi, 0, Pi}, {-1.2, 1.2}}, ImageSize -> 600]}; Typeset`initDone$$ = True), SynchronousInitialization->True, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{{3.433220781359375*^9, 3.433220798296875*^9}, { 3.4947393645*^9, 3.494739369890625*^9}}] }, Open ]], Cell[TextData[{ StyleBox["\:6ce8\:610f", FontColor->RGBColor[1, 0, 0]], "\:ff1a\:7e26\:65b9\:5411\:306b\:6ce8\:76ee\:3057\:3066\:898b\:307e\:3057\ \:3087\:3046\:ff0e", Cell[BoxData[ RowBox[{"sin", " ", "x", " ", "cos", " ", "t"}]]], " \:306e\:30b0\:30e9\:30d5\:306f\:ff0c", Cell[BoxData["t"]], " \:3092\:5927\:304d\:304f\:3057\:3066\:3044\:304f\:3068\:ff0c", Cell[BoxData[ RowBox[{"sin", " ", "x", " "}]]], " \:306e\:30b0\:30e9\:30d5\:ff08\:7dd1\:ff09\:3092\:4e0a\:4e0b\:306b\:7e2e\ \:5c0f\:62e1\:5927\:3059\:308b\:3088\:3046\:306b\:63cf\:304b\:308c\:308b\:3053\ \:3068\:306b\:6ce8\:610f\:3057\:3066\:304f\:3060\:3055\:3044\:ff0e\:540c\:3058\ \:3088\:3046\:306b ", Cell[BoxData[ RowBox[{"cos", " ", "x", " ", "sin", " ", "t"}]]], " \:306e\:30b0\:30e9\:30d5\:3082\:ff0c", Cell[BoxData["t"]], " \:3092\:5927\:304d\:304f\:3057\:3066\:3044\:304f\:3068\:ff0c", Cell[BoxData["x"]], " \:8ef8\:304b\:3089\:51fa\:767a\:3057\:3066 ", Cell[BoxData[ RowBox[{"cos", " ", "x", " "}]]], " \:306e\:30b0\:30e9\:30d5\:ff08\:9752\:ff09\:3092\:4e0a\:4e0b\:306b\:7e2e\ \:5c0f\:62e1\:5927\:3059\:308b\:3088\:3046\:306b\:63cf\:304b\:308c\:307e\:3059\ \:ff0e" }], "Text", FontSize->18], Cell[TextData[{ "\:3064\:304e\:306b ", Cell[BoxData[ RowBox[{ RowBox[{"sin", " ", "x", " ", "cos", " ", "t"}], " ", "+", " ", RowBox[{"cos", " ", "x", " ", "sin", " ", "t", " "}]}]]], "\:306e\:30b0\:30e9\:30d5\:ff08\:8d64\:ff09\:3092\:8ffd\:52a0\:3057\:3066\ \:ff0c\:305d\:306e\:52d5\:304d\:3092\:89b3\:5bdf\:3057\:3066\:307f\:307e\:3057\ \:3087\:3046\:ff0e" }], "Text", FontSize->18], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Clear", "[", "G2", "]"}], ";", RowBox[{ RowBox[{"G2", "[", RowBox[{"t_", ",", "k_"}], "]"}], ":=", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Sin", "[", "x", "]"}], RowBox[{"Cos", "[", "t", "]"}]}], ",", RowBox[{ RowBox[{"Cos", "[", "x", "]"}], " ", RowBox[{"Sin", "[", "t", "]"}]}], ",", RowBox[{ RowBox[{ RowBox[{"Sin", "[", "x", "]"}], RowBox[{"Cos", "[", "t", "]"}]}], "+", RowBox[{ RowBox[{"Cos", "[", "x", "]"}], " ", RowBox[{"Sin", "[", "t", "]"}]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "\[Pi]"}], ",", "\[Pi]"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "\[Pi]"}], ",", "\[Pi]"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "}"}]}], ",", RowBox[{"AspectRatio", "\[Rule]", "Automatic"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"Hue", "[", "0.4", "]"}], ",", RowBox[{"Hue", "[", "0.6", "]"}], ",", RowBox[{"Hue", "[", "0.0", "]"}]}], "}"}]}], ",", RowBox[{"Ticks", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "\[Pi]"}], ",", "0", ",", "\[Pi]"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "}"}]}], ",", RowBox[{"ImageSize", "\[Rule]", "600"}]}], "]"}]}], ";", RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"G2", "[", RowBox[{"t", ",", "x"}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "20", ",", "0.5"}], "}"}], ",", RowBox[{"SaveDefinitions", "\[Rule]", "True"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.4332208533125*^9, 3.433220881953125*^9}, { 3.49473938153125*^9, 3.49473938659375*^9}}], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`t$$ = 0, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[$CellContext`t$$], 0, 20, 0.5}}, Typeset`size$$ = { 600., {98., 103.}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = False, $CellContext`t$1205$$ = 0}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`t$$ = 0}, "ControllerVariables" :> { Hold[$CellContext`t$$, $CellContext`t$1205$$, 0]}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> $CellContext`G2[$CellContext`t$$, $CellContext`x], "Specifications" :> {{$CellContext`t$$, 0, 20, 0.5}}, "Options" :> {}, "DefaultOptions" :> {}], ImageSizeCache->{647., {143., 148.}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, Initialization:>({$CellContext`G2[ Pattern[$CellContext`t, Blank[]], Pattern[$CellContext`k, Blank[]]] := Plot[{Sin[$CellContext`x] Cos[$CellContext`t], Cos[$CellContext`x] Sin[$CellContext`t], Sin[$CellContext`x] Cos[$CellContext`t] + Cos[$CellContext`x] Sin[$CellContext`t]}, {$CellContext`x, -Pi, Pi}, PlotRange -> {{-Pi, Pi}, {-1, 1}}, AspectRatio -> Automatic, PlotStyle -> { Hue[0.4], Hue[0.6], Hue[0.]}, Ticks -> {{-Pi, 0, Pi}, {-1, 1}}, ImageSize -> 600]}; Typeset`initDone$$ = True), SynchronousInitialization->True, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{3.433220883078125*^9, 3.494739388953125*^9}] }, Open ]], Cell[TextData[{ StyleBox["\:6ce8\:610f", FontColor->RGBColor[1, 0, 0]], "\:ff1a\:9752\:ff0c\:7dd1\:306e\:7e26\:65b9\:5411\:306e\:52d5\:304d\:306b\ \:8ffd\:52a0\:3057\:3066\:ff0c ", Cell[BoxData["x"]], " \:8ef8\:4e0a\:306e\:8d64\:306e\:52d5\:304d\:306b\:6ce8\:76ee\:3057\:307e\ \:3057\:3087\:3046\:ff0e\n", Cell[BoxData[ RowBox[{ RowBox[{"sin", " ", "x", " ", "cos", " ", "t"}], "+", RowBox[{"cos", " ", "x", " ", "sin", " ", "t"}]}]]], " \:306e\:30b0\:30e9\:30d5\:306f\:ff0c", Cell[BoxData["t"]], " \:3092\:5927\:304d\:304f\:3057\:3066\:3044\:304f\:3068\:ff0c", Cell[BoxData[ RowBox[{"sin", " ", "x", " "}]]], " \:306e\:30b0\:30e9\:30d5\:ff08\:8d64\:ff09\:3092\:5de6\:306b\:79fb\:52d5\ \:3055\:308c\:308b\:3088\:3046\:306b\:63cf\:304b\:308c\:308b\:3053\:3068\:306b\ \:6ce8\:610f\:3057\:3066\:304f\:3060\:3055\:3044\:ff0e\:3053\:308c\:306f ", Cell[BoxData[ RowBox[{"sin", " ", RowBox[{"(", RowBox[{"x", "+", "t"}], ")"}]}]]], " \:3068\:540c\:3058\:30b0\:30e9\:30d5\:3060\:304b\:3089\:5f53\:7136\:3067\ \:3059\:ff0e" }], "Text", FontSize->18], Cell[TextData[StyleBox["\:4e09\:89d2\:95a2\:6570\:306e\:4e0d\:601d\:8b70\:ff16\ ", FontSize->36, FontColor->RGBColor[0.501961, 0.25098, 0.25098]]], "Text", CellChangeTimes->{{3.494651311046875*^9, 3.494651315*^9}, { 3.494651932828125*^9, 3.494651933625*^9}, {3.494652232640625*^9, 3.494652233859375*^9}, {3.494652354765625*^9, 3.494652355734375*^9}, { 3.4946536093125*^9, 3.494653610234375*^9}}, TextAlignment->Center, Background->RGBColor[1., 1., 0.5254901960784314]], Cell[TextData[StyleBox["\:4e0a\:4e0b\:306b\:79fb\:52d5\:3059\:308b\:6ce2\:3092\ \:5408\:6210\:3059\:308b\:3068\:5de6\:306b\:79fb\:52d5\:3059\:308b\:6ce2\:306b\ \:306a\:308a\:307e\:3059 ", FontSize->24, FontColor->RGBColor[1, 0, 0]]], "Text", CellChangeTimes->{{3.433214038421875*^9, 3.4332140516875*^9}, 3.433214114625*^9, {3.49465195015625*^9, 3.494651953046875*^9}, { 3.494651983984375*^9, 3.494651989734375*^9}, {3.494652262921875*^9, 3.4946523121875*^9}, {3.4946523799375*^9, 3.4946524115*^9}}], Cell[TextData[StyleBox["\:3053\:306e\:3088\:3046\:306b\:52a0\:6cd5\:516c\:5f0f\ \:306f\:4e8c\:3064\:306e\:4e0a\:4e0b\:3059\:308b\:5b9a\:5728\:6ce2\:3092\:5408\ \:6210\:3059\:308b\:ff08\:548c\:3092\:3068\:308b\:ff09\:3068\:ff0c\:5de6\:306b\ \:79fb\:52d5\:3059\:308b\:9032\:884c\:6ce2\:3078\:3068\:5909\:5316\:3055\:305b\ \:308b\:610f\:5473\:3092\:6301\:3063\:3066\:3044\:307e\:3059\:ff0e", FontSize->24, FontColor->RGBColor[1, 0, 1]]], "Text", FontSize->18] }, Closed]] }, Closed]] }, Open ]] }, WindowSize->{1008, 651}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, DockedCells->FEPrivate`If[ FEPrivate`SameQ[FEPrivate`$ProductIDName, "MathematicaPlayer"], FEPrivate`Join[{ Cell[ BoxData[ GraphicsBox[ RasterBox[CompressedData[" 1:eJztXXdYFNfaz3O/f+79vudek3vTLKBIEaQpTRC7BgtqLCTWGxNjYsFookE0 NoxRY6oFuyIiWJCO9N4WWHrZpSy7VKkiBo2iy+5+Z/fsHg4zO7NLUZJ4fs/I Mztz5j3v+87u+zvnPe+Meuu3L1v/P6+99poJ+Gf+t9dek+8LBwiBIHvu/Byd ManLXMoSE+ExkQoZX+8W641rHWPUaDZZav+BZOoa6ZRVkhkftXrdrC3lg60h JuGh667nVjNkJjbd4ywfjhzbcP7iQFUiICAgIHiVkHfVO0dHL0tnDFd/XNGH q/g3bgrz84VFRVmnznAMrGRjDCSjxz6xmCFx3iFZtl/ickC6ZK/U6YtnS7Y/ c/6s23Zpt8V73aaOz8wdn+pbto4yqI2NG2qDCAgICAj+HIBTHn5GRrGhMV9H r0hXr1hnbKGuQaGlQ6G9U5TJTJ7ZFJneaNnoMd0GZl1rjos3X+7efEn8uafk k1OSlUfFi78RO30htl/5fOK8p2ZTmnXHNxlbVWVzh9osAgICAoI/ByANVVVU 5DpMKRs1pnS0fumYcTwDywIjh6IJixMcVrWNt5HTkL5Bt/7YR9OXi9yv1+7y urfLu/1rryfbLnR/7iledUQ8b7vYcUXn+Ol1uhZ1EycLCwuH2iwCAgICgj8B 0AIQ2C9Yv0E4ckyNvmmh8YSs2U6chUvTlq9JcFnDc5pR9t4M/rw5/IULeDMd M9Z9lrTVLWXLDs7Wr3O3uhVt3sn79Ev+2k2lLmvy5r+fY2JXZjO9qrh4qC0j ICAgIPijQ4RB/vGAR72OUaHlpIqzhxsCL9QHXq4N9q4L8mryP9d051xT4IWm oEtNARca75yvC79eG+Fbd9e3/q5vQ4TvvfDrjaE+94KuNgRfFvmdips8jZ+W wd51VXl5bkCgIENDMwICAgKCvyoA9VSroOShbw7UjbXJ/+KzxqCrLSHhTZFJ dbEZnRFRv4eGPQqP7IyK64yN74yL7wwP74iOackrbCkobs0taOXmt3FyHyRx QPv6oIi68IhSz3NRK9bnht2tEgjwHiv4/JykpOgTJyI/3cBdubru7Pnq0tIh sp7g1YUgNFTg4zPUWhAQvLpA0x9IQDUKyJlIKCxfuqbOYm7RQbfG8KC2pLzG tIKWhHTeuXPtsUlPsoseZxU+zsp/xC14lMF9lJjSmc7pKK1oLxO2lQjasoub knKqYzKqIlOrEzOrwuJDxtpfe2fMRSs7/wWLvZe5/DR/wS7HyTuNx/365lvh 7wxvWLuuLi1tqD1B8CoCcBDvtdfAxtfRAfsvqJcMMs0n+OsiIiLC1dX12LFj PB6vfxJwGgIEVKuAqKKi6OB3FaZzBDPW5Xnsro2+W59e0JKc2ZGUGjppcqrD NN4V7/a84of5JR25RR25hR0cLjjVEZ/Qnpp2PzWtOT6pNjqxKiy2PCymMjaJ Fxrx7bsjdg1745dhbx/4xz+//Pv/nvjXsKi33m4Zrts9fkLzZa/B9QkBQZ9Q sXFj+cqVciYaNqwqOXnQ5efl5Z09e3bQxRIQ/EEARlmBgYF79uzx8tI2mPMz OKnXrqVcv56flFReVARmPVUCQSWPV87llsbF8QKDC095Zi9akW04JcveJXOB a46He/XdoObY5N/iku9ncFPmL7ynY1ww0iB5xWp+cFhTblFrTmEzh9uSmtma kNwaGdUYGlIXHCgM8C+/daPI93pxSFDW7ZtfvPPumRHjfN/R8X9nROUYPamh kUxPr9vSuj787gv1DwGBlgBkBJiozNFx0CUTGiJ4FeDn5weYSMvGIj6//nYQ d8VHZ/QND41491drK087uyAb23Rru6yJtlwbB96kqeWWtgJzxxqrWS02Mwr3 bK2/49MWGduWlH4vIztunnOVgUW1qW2Fnmmq/vikbV/yI2JqOTm1yZy6+OS6 qJi64BBRQED5rZulfr55167mBfjzbt3Ot5xeZ+oonjhdamYvNZkg0x/XbTmh PibmhbpF4OMzWDn/qvx8ubQXlrQhGHKAeRDMzg36OhGhIYJXAWBO5Orq2tf8 c11ymuiLr/JMLTMMxsUYjeNaTOh0mCab5CiznCgzMpTpj5YZjJWNG5/n7iq6 ff1eVEJdQpowNSNyrnOpkWWpmS3PzK7c1DZ/jEnkRLuUI9/zoxOq4lMFEdGV AcEVN2+X+PkW+Hhnel3m3bnTGp0iXXdIsnibZOpKqe08qYmtxNT6XkiI9qoC FoAhAmxgHx3nDxumNnTAkS3awEd0Cgx38UEv5SOA8pJdu9CRyiNHUEegJTiF LoH7PNXbk4AaFH3o0nCxcjlmZnjX8ryQykCYKULKI6PAcRAzgQJgQ8wIdvg6 OmiNA16LhKMYW3n6NHIpaAPtApeUL1gAdYZaIT/TL4S9QK1AG+hAIAfYCCRA reiug5pQtIJqg66VvjUzg47quQoY6OMD+gI74CDdh7gyFFA0x/0DRIFNfit7 X4hucS85DI6ie4YJ7DQEfrkRERG91ODxduzYAY6jI3CcCY6Av2Afbwwkg+Og PUzLA1EeHh6uCoCdhIQE1MWvv/4KW1IyJyzC1Z6CCwGoTWBgIPgI/lLsojTT pke6KyjScOADb2AR9BiwEe8XmA+9ARqDffAX6QncBVwHrwLHQfCER6CLgBzQ HuyjxQ7cz3gX4MJjx45BlcAOCsJ085F1LB2xeADvCBiFOxyZCQAkI53BFw/I RzayZMyABNwK+LXRaAjlFOgOfKR8hbSEKC1d9MmGBxNtH9o6dE6Z0WUzWapn IBujIzMykppPlJnZZbtvLb95XRQZL4hNKk9MCXCal2ZokWlmw1Fsmea2mSZW EToGd2bNST3pWRoaURYUzPP1LfT25l65zLl0oTImqS456/mus5JPjkmct0om L5WZTW07ea5PSqLwjkd4nJvwOI/CNdjB9+HZftAQCqTgYE/MHDANocVxxDuU xkq+UwRtxA7gI+iazr9IMcgIqH2PFTBiq4RDw6EhUCCQIFQ3KaBcqKQShflw XynEzAxpRXEd1EpOKL3dBfrq4XeFXWBDCoB+oWKwjVofQquZMmm45koOGjZM LlNHB9Ec/XZQRjVMjqJ7hgkaaYgSw8EPGQYE/COIIaAZ+Iv/0mEEAx/BKRQe QeQJVADswJYo4oGD4AjORCzCmU5B3sEVUBvf8GZ069T2qJbOcGmBGFC4hhwE nYCirlDF5iCoIquRfHAKhGV0FZAAgjxkJXgEXIWPBCh+RqaBO4u6QFeBg2rN R72zdMTkAdgRZB8AyGKoJXAFOILMhF82aD4kengKXM7iW9wKXDiLIZRTSI7a XjRCJBLVnvR8OnWWxH6a2G6m2Hy6ZKy+TE9XamErnfQex8211Ne7IjyaFxFb Eh3nPXvOTT3jAGPLO9gWaGJ5W8/44sjRN5a5ZF64WOzrV3DFK/X8uTy/myVx KRXxaR37Lki2npKs2C+dtqZr6QZh78ptjUDhC//V49yEIgPiJkowR9G+rzSE ekFkAQLmoNAQOgsb95RsqRbKkTTUEYh7yo5UjSm0AjlLnkJUNaDwFFSbfhZ2 B3coYZ8S6nGTYaeAjCinqOarpk6UflF71BdMfiodrnACOAKjvVquofifAlxz 5cxFNaVCrI2bD52P98XuKHYSROgTDcHoAQe38AgMWagBDDVwnxIH6DMd1AUe HHAJLMKZTlGCMIj8au1ioiGWHjXSkNpTFIEwigpVY3VICugjlA+ZC51il0Pv HX0Et5WyGgI+wnvNEr1ZOmLyAL0jaAK9JfInaAAu0Vi6BhrAoQt+EE6c4bXa 0xAwBE5y+10vV1NT0xAdI35vocx8Sre9i3juFrGVg1RXR2ppn+a2pcDnSmnQ 3cKQiILwyDMzZv48Su+0vvGp3hs44qlv/PNw3eO6erfWr088eTL70qXcsOiC qITSmKR7Hhefu52RfHxEOuPj5tt9SMdBKH/vivhPCXrKpJAqPleePo0HMSEt edJnGqLNWQYrKYd6h2fxMIhsRNLoasCZCOJfJU8NG8ZkCN4AJzgmrZgk99gY GorP1yDUzrmQKIpWTCQCnYCSXXBmh5uGQHc4Dlxz+BVCk+KeSZ8qq6nMkSqm PD1jA1ZH0X2uFn2iIRhG0A8c5tvxgAlTHzD5g8cBekumLpAEFuEsp2CncELB MvRVSxzs5vSDhugCUUuW+AlYnn5HoNvV9shEQ/RMFwz+7L2zdMTkAXpHTAsx cKoFbdSmbg1OSClfG3hT4OVa0hCkM8j1THlFjaiurq6trW1MSeuetkhq94Fk +Tf3N53onDpfNtaQ47al9Oa1irsxpZExJVFx52fNPqVrcM5wvNrtvJHpWX2T X94aecnCMvG7wwXR8fyk9PL4tFqPC4/czkjXH5HM21yf3OdnKGBwoyymKJdO 0GRHwTtqIxse+vqRlFPS34IFMGQNIg3BnCGM0vBaFAahObBreDlaWFEu4igI F8VAOv9SKACnD7QPJFM2IX3m1Xt6ghslXxtSjQ2UzsEsQh+RKGHvCRQTDSHe AUaBLtAMV22JCIuHe5kcGopmeXTfImWA5tCTymkjq6Nw+WrvL4T2NASnQjCL whRLhQxxgJ62QpkrcBzP9gtV6X0W4RpPwaEvy7hXrQR2c/pBQ/SVC5hAU3sJ e0cwgAOB9FkAEw3R5WhDgiwdMXlA7XFKwEfrO8hGmKnDQR+lwPtI7xGNMbSk IXgjgEXgKqYJskZAGgJzoubgMKn1YsnSPR2up0p2nm6fPDvX3VUQ4Fcdm1QZ l1yekHzDaV6YoXmkmbWazdQ6wnhCtIVV1jLn9N2uCefPlscnizg51enZdR7n H7if7t70o2zu9par/n3SDUUhtAOPwzAiXxZX7MDB84ugIbhIzcNqHgaLhpRU oojSMPbK47lCCAzUyikPNgGEjIxvKHnF671iTqcAHpaYogjpkYanxWCVAk0y Pi3FV/DRpmZyiuaSmFZ06sQ9A3vBN7VVCihHCtkBMhe6cfiFeDkE2np8q1AM X0iCN5HFURT5TNCehuiJr77SEB1CBhrShmtYTtFlUvByaIh+vN80JMRKHXDv 0UUNkIZYOuorDaGDcLUIr5FQ+2WgC2FKq8JVNnZD8FOgPaIttdlCjRCJRDUq gP0n63ZIF2x/4npC4Ha26Kufcr/5QhToVx+fIkpKr0zJCJo3P8PQgmtum22m 2FQ7WSbW3PFWJU6zit03JZ79pTAyuja3qCY9q5bDrePkNHx74b7bSfHG49LF X4udNtRmq0kdMEGZrVIELjxhguI/mhYJBy8ph6JTL00U8wh8jX6ANIR0AztQ FM6V4KByXoBRiRBVj/v4KCeJlBo2VV9q5kdw/K9ITFHK8HpmHD4+TLxDqdnD c3HQFnAthXfoBQ94JZ583Ye5/AC5VO7z3ik1HPQRgnwapeIFiuZKmYr7SMko 4glSlKBjd5Sw90IhE7SkITQVEmI/cO2TcpTKLngWDnQp8QdKAO0HkpQDYUeb 2RA+FAeNB5iUw6XBS6DV/UjKsSSsgGQgFmarKDIpH/uXlGPpqH80BJ1ASYXR 6x7VjhxcFZMmeo+Q19gNwU+hry76dtFlsgO9QgHS0MN9x6VzPn/+2Y+NOz0L 913IOexeH3SjKTGtPjVTmJYZNde5zMCy3NS23NRG8de23MS63Hhi9RRHkeva TM/jKX5+uf53mnLym3MLmzNzmrLzmji5Tfs9H+4+I/74kGSJm8x+RdfSTTV5 BVqq1ysJphqyKlNYihiCNxisEgVY2QWPgFiKD9dhSKSklWDcQzFWOVNADMg8 WkbrIDgNoQkRZUlIrgler06pYeu9Yo56RykyPGbCs6g+nBJdlVUBZmZKpyku lPsEy7z1kC+WklJTaNebaNRWKSDJOPAjOPVTgN8CNEhAHEq5EJdJKSbEaQip LSdlVkeh7liYVEsaYqo96FOJAmXtGw50XWklCoiwBlKiwM5E9NkZDE3sJQrs BQ84oBC4JKF2xZ8lfjIt3+NHWPyMPmosUUDUQAnOTB31j4bU1sZTdENJM7oQ bWhIrSHID5AH0USsT69TgMDf5CN/m1yloOv9jyWz1ks+PvJw55nyPWdzj+1r DLvdnpjakp5dz8mOn+dcrW9RPd5GvplYVxtNqJ9o27h2SdEvHlkB/qVhEcVh d0uDQ1q4+fdzi9oz8zpyCjoyczu2He3c9pN4nYdk/hbptLUyc6dn81fXJado oyF9mAp++2hHiC3uw/ZaFmzDJ0eUz4Mo6njxbBXKfcHROAzmeME2bIxioLIS WCVN/tHMDAlheUUMsg6nISE2IcKDHqxwpmiCFnRQaTFavOjRR0cH5bgQK6G1 NiQN+RB9xC9U2qXqpWdZ6sgR+QM1K1fKdVA1BgEfTvHQ0zqwjFzIUIkntwtK UNRsCxVUqEy1oQemsFIHBDQDRXM3pUDFFJIyXQVdyO0FXwygmMo58JTa0Qvk LxZHoXU0egU4gjY0hE+FhL3jHlOFMyzTRXMEdBVcEYCn0HNDrqpC7sEt2GZZ IWJKo7EXbMMlCfqzJ0zShLSCbWis2ksoE09U/wwLtgGQHLzymcnPQk0F2zsU wAuzoaOYOhL2l4agOej+wpuO13jDXtRSvDZJOSZDmOgYTQm1B+XVpk3B4RLz Gd3TVkpWHOjaerLB3bPghwMtkYG/JSQ9SM9uzs5NmK+kIZHRxBozq6YlcysO 78i84cNPSL6XlnEvLr4kNLwoOLiVW9CWU3ifk9uRV/woq+Dxp/t+X7VL+sEe yexPpPbLpDaLZTYLxI7zqry8NWqI103BsTSMJHjQoER7cBZ/YkXt46t4ETge glBMQ2tP8mdFe69T9KSnsKE46hE+HYk+sj9XgsIdVAzFUjQhoozSKasb8qCN TVjwDfgKVSmgSI7P8oSKxB3uKDRrQwmrXnadPt3LLqzqTK1/8Ae7cOail89R 1rwQxeNLTiyvHqXogxKDeDEGquvAO8JNpnAZZdbD5Cg0BEIlEHT1tKEhGChQ PKeEULXPe8IjCCj6oZYocMFQP1iPr+K6wSVpcJa+9s1CHGrFwnkNCKFQT+2l CbGlFkhhrljBNt6MMqpHDxmBWA31R4pBaoC3g+5nbR5fhTcCPjPrij1KTPEA 3pFwAGtDoF9Y5A+LH5CNUDdKLzi0KVFgMgRPTuLfcHqmVCNwGqrl8Z/OXSIx myK2X/h8weautYfuu/5c9P3+1siAR3HxD1Mz7mflRM53Lh5rxjOxEs6eLnD7 jHv1XEF4pCghpTktozklpSk2tvJueEFQUHN6dktmXms6tz2n6GFWwf3/7nm8 dPvTmRu6HVaJrRdLzGdLLabLLGdKJ0xt3/xlDSeTST16YS0Kvzw886MqpcOv VfsyH41JOYqEHk1UKzKMqioa4OvjkMKY2kOggjeKRUIsXNMnAjDA4sJ71b9t 3Ag1wSuK4doNntPDzdRsF94Xg11QDt4F/sgqTJohTdRm4egaMjXGQbmJFOqh DwbotxId6aU83ck0R+GiKF8ABI00BDkIpwD2qNvXZkzBrX8YXN0Gt9NB7/fF yVSLftNQv6GxYJsFg+sWxEQPP/28e7zVM3OHbus5YkeXZ4u2ta7en394T1PY rYfR0Q/iE9tSUv3nOCVbTCj5fFXOmR/ygoOFsQn1iUnC2PjqmNjGmJjau3cr Q0Jy7vjfi0u6l8Spi0tv4uS1cwoebvjuscuurtmfPrVdKLZ4T2LuJB0/VWZs JzOeJH9SyXJK20cbqgODhBUVFN3QyBYdQUkh/CDLEjYFfaKhl4CelwaoFiPQ KWQ7ngViB+XRKnqt9csHvZxMbcwfCChrVWi9RllF0PsZ25cPjTQERpj4VEio 9Q+c5YU5lC4IDQ0EWvp54Hj5NKTx8VUWvAhXV2zcLB5rLDaxemxo0TbOttl8 Vp3DysIFm7MPudcGXGsJCWoJC2uMiAxZOC/tm23ZftfKgsOEkVGCiKiy8IjS sPDCkJDioKDSO3cKb91Mu36tKiRSEJtWGZVSk5zdmpLzdN13Txdu67JZJjZ9 76nt3IdrtzzYe7j1hGfLxSvNV661el7o2Pvtgx27m05Rf614il6lpzLm4JVa 9GZMUEtDlFK0lww8TUQZbOOntKESuEZPf6eExveevVAAAoLrWRSt2NOVfZJP yf7hXw+1dX0vExppyJX2Ji7tf+DalCQNIQ3Ra9sG0qk20l7QzAX3M1q+H3S8 fBoSanqZj8YLB64AhIjHa3XdLh6l1zVKr11Hv1HXQDTWtGb8ZJ7V/Jx5GzkH vxb4Xay+4Su6dav61i3Ozz8WXvctvu1f4u8vCAgUBAYW37qVfv168rVrYMu4 ejXzypXYC+dLfG/zwxL4QbG1iZltabnPluwQO6zsdNnUeupiTXYOoyqCKsoB EGHQ0rayiSLPQzkIV8O1CWsUGkIpIxCmhmrADF/dqXyjWu8JgnyJSnWqf+/3 1vK9Zy8ZUKvBcjhcBcM3+GgtPEt5WevLh0YaokyFhIM9/B4SGqK/jLR/L71k ksbk0peQQBsSGqK/mkDtwf6B5dWmLBhEVzf53nruOKtzlF7NOLOaibaVVrZC m0k8Q9N8HeNsI/u0mavjN3/Gu+lVfsOv3P92xR1/fsCdquBgUWxcbSa3Pr+o LqegIT2zNia+MiiIc8Mv9qpXrNeVqCuXMq/5VIbHC6OSH1TV1kXEPp+8+vfl m0T8skHReSCAMR9P36F6hiEcML840O39IwAuu7yc/zgDkdRQ/T8dQ/4fPQxi vBK+xAxV//AHV48dg3unXjQGxdWi4mKB5/nwj9cH7tmTHxhUmZMjKCkRlpYK i4srk5MLz5xNfn9VmPX84ElTOD//IORmN1VWtolEbXX1bU3N91va2lsVW3PL g8bmjsam+w2NrbUNzVXCmoqKSj6/qozfJqp+9OBhe01N8axlT0xmNt64Myi2 ExD8uTDkNERA8IdFVWlpEZdLP44qFspzc8Ns5/jpG9wwNoqYM6dw3cYS96NZ e49x9hzJ3Hck99BxsHEPHM13P8jf8U32VveUDV8lfOYWu37nTecl+6c6Rs9b kL9kdan17DaL6Y8MrOvDyH+0SvAqAtYGD7UWBAR/MiAmCpjl9Mub/z45YozA dq5k44nn+7ybvrsuOOIjOHpN+IOv6Mfrwh98ag9d/H37MeHGw/lr92Ws+zZ9 1cGi5bt8jO02vvF6pZFZnfGEJkPz+7oGNX43h9osAgICAoI/E8rS0o6OHO7x +ptn39HvmuwiWbZXsun0E7eLD/Z6tRz0bvDwrj10tcbjSsO+i+0bj7as+7Z6 xYHyNYf5y3bxnT6vmvxhpJ55/CjdyrGGVXpG9Tp6Fd8dHWqDCAgICAj+PBAI kn788cib7+7/v9dTdMdJHN6XzNkgWbZb8slPkq1nn3198fHuK527L993v/Rg 57nfPj32ePV3vy37pn353ntzNtZMcqk0nV5mZJU1Wi911Oji0XplI3XLFi0V VlEL4QgICAgICNSiSiDITUw8NFLH45+vPzOxlk6cKZm0WDJtjWzWZtnifdI1 30s2/Nq98WT3phPP133/fOWhrkV7njq5ds5c/8hycfPUJTV2s/ijDXOGj4ob PjJ+pA5nhG6OoXGFuqUoAgICAgICtcgIDV3/93+kDB8pNZkgHW8nM50msXPu ctny++aDzz50k87cIlm0W7LIXeK8s9tp29MpH/9us/ypyezWo7+IioqFYAsK Llm5OmXM2MC33ol8e0TcuyNzvTW/QY6AgICAgADiyv59B//1L5m+vsxgnNTM utP1q7pU5ZPLovKKhx4nZXYrpFP+K53yUbfd8qcWzl2G03775AuKEF5sbMJS lytv/Mf/P29HOi8ieTkCAgICAm1QJRBstbYSDB8p09Pres+pITqG3qbzKw+Z zWLpxLkSG+cnxtO6jB3r45PUSuNcunRGR/fCsDdq1ckhICAgICCgICs5+ei/ /y3T0ev48isRwzvuqotKxLOWyl+UbT7tmZH9o8WrhAIBk8Di5OTjxkZx06eT CREBAQEBgUb8vGVz24jRTZ7n2Js13wyQjbeXmTmKDa3aftXw/kwel/uzpYXo 0uXBU5OAgICA4C+IHA7n0tvD205d0Kbx74s/lBlNkBpb18TFa2zMz8uLcd1a nZM7YB0JCAgICP6yuPT1zta9h7Vs3HLJS2Zs02ntWFFYqE378sLCCkJDBAQE BAQMyMrI4B//Rfv2osrKbodZ9xcseXEqERAQEBC8OqgoLu5rFcGTlRu4HwzZ /25JQEBAQPBHw/8DCp03+A== "], {{0, 0}, {557, 41}}, {0, 255}, ColorFunction -> RGBColor], ImageSize -> {557, 41}, PlotRange -> {{0, 557}, {0, 41}}]], "DockedCell", Background -> GrayLevel[0.866682], CellFrame -> {{0, 0}, {0, 4}}, CellFrameColor -> RGBColor[0.690074, 0.12871, 0.194598], CellMargins -> {{0, 0}, {-3, 0}}, CellFrameMargins -> 0, ContextMenu -> None, ComponentwiseContextMenu -> {}], Cell[ BoxData[ GridBox[{{ GraphicsBox[ RasterBox[CompressedData[" 1:eJztWl1Ik1EYFrqNEoLMbHPmNkRrEhJERj93ra4cJvbDRIsyMk1pc03tTL1w aD+LfkQIJBkR/dBFdtHFDLywCykqoqgLIYRu6jbb8me933e+HT/P2fZN+sZ0 vg9n43zfec973nPe57zvOWNFDS2OhnU5OTlG+LyBj1S/ikAgEAgEAoFAIBAI xEpFMBh8jUgPYG0z7d7MAOYedm/Bko4Ca5tp92YGSCokle5AUiGpdAeSCkml O0RS/R1tjEajUIHvyIhdehPyLNZjrVSAgT5CK1Tmf32e+/qcdYEy+/4+vKTd oQJN89PjojbaHcrCzE8qn0RGfIxrEjcF0SomD49hYqDDUUSGKtUKWRMYz42L pFJDg1RPamGdlRWGuuDi2Yl+WHkoiy72W6jjgFeSm/wWKEAScCvtCxWpSzxt 1FPU9dJ76Lt8UnEmcVMQrWImUQE6nKJB7sgUKpb4LcpEtHiFpEpEKim2TI8n IhXv4pAHXCAJEAPIq7d5JFAOYYEGKHEstTbQAJKSx+XH5ZKKE+CmIFq1ZC/E SBVXoboJyMliKZKKgyapwLlK1ohHKgpYYfGRbnNpg4c8dP3prtckFQ0gUm5K miKpVZxnRZP4KcSziiU1bjhOobpJ2TtIqnhITipYZ7byydJfoDzMpT9ZWMo1 EHbgBBLyhOWzlmakUtKQnB/VuUYkFbWNjZXIJHEKnFVL0t+IXSQVU4iRKkUk JxVzhJI7hirpDpXOGzJ5eFLFvMNORxAlaJZhmtmZStQGAvSQA/FECSksH/kt VLMyokw5qHDOFU3ipiBaxZmtTSo8U2lBI1LF/BWNXZ0Y1LckLo9IqQdYIWdA 9T0uvPT2J2qjrUr2lGMRSzrq4eiIVIxFGC5bMZO4KYhWcWYnSn8gv3j7k+vJ GbVaSNXt9fo6O/XVib9Tpa+sClLdvtB0q+WSvjqRVGucVA/q6p9V1+irE0m1 xkk1cuLk2O49+upEUq1xUg1X14yZraSrS0ed+H+q9GFV/J+qx25/u9U40Nqa aUMQ2YMrFRWf8g0vDh9JvUvgYjPR+8KIyA5AyiNeb1Pe5ql840xxSV97eyq9 Hp1y3nE602waYoXC19GRqInIGHC57lY53Lm53/O2RQ3Fr6qqNXUG609/LLX1 ulOiHyL74D/XeLPxvPiexHDtsuulyexbv2GqwLRgNP8xl/W7XAQE1IUQ1nHw zNl5o2XYoc09RLbC5/E8te26V9+gfskY5SPkuss1abLc2Ljpm9E8Z7FFt++c POroJoQWn1wotQAPj9XMFZp/m6y9bndGpoNYCZBikbNuoqBwsPY4IxIrQJu+ trYf5pLRfOOXotJw6d7Zsv0LtkOPzzb1ENKjolagueVD5YGodUfEZH2372Cm p4X4X/wDFcRtOg== "], {{0, 0}, {199, 30}}, {0, 255}, ColorFunction -> RGBColor], ImageSize -> {199, 30}, PlotRange -> {{0, 199}, {0, 30}}], ButtonBox[ GraphicsBox[ RasterBox[CompressedData[" 1:eJztlDFuhFAMRJHS5w45Re6RI+wFcoOUtNtR0lJSUlNSUtNS0m9JXjTKaPQh UfpgCeT1n2+Px15ebu9vt6eqqp55Xnm+/I/L/p+1bbtt277vvJumIcKbnwWs 73vBsHVdE1bXNQ55Ho8HMOEd3L9tWRZ+6tRBrrjEMAwigHO/37M6SII40zRB Q7QLkpQWjKOu63RqGHHVIoOYYAR16oucinYGxUo2jqMIzPNMnpQRPF2nMkeS cCBDXsm7ZNZp6oZRS3wsIBFNIYM2iY8gYmJA8imqawHcOAKqio4KSp4O7Qjp K1nOUygasaG2hoKSaud3krkArggZzyhhTohP3Uz7E0mNu9g98oj26exOSTon fRUtn8IUJL+W80gyuz6OW3mgrSXXEv5dSaRTaRz9KQpY/knxtVomKdFQxvFT JZFR6pFBJWT5tbEvR9+H3F6S+GOSMC+DTHtrHYyh32Qu855cdhn2CUundjY= "], {{0, 0}, {55, 14}}, {0, 255}, ColorFunction -> RGBColor], ImageSize -> {55, 14}, PlotRange -> {{0, 55}, {0, 14}}], ButtonData -> { URL["http://store.wolfram.com/view/app/playerpro/"], None}, ButtonNote -> "http://store.wolfram.com/view/app/playerpro/"], GraphicsBox[ RasterBox[{{{132, 132, 132}, {156, 155, 155}}, {{138, 137, 137}, { 171, 169, 169}}, {{138, 137, 137}, {171, 169, 169}}, {{138, 137, 137}, {171, 169, 169}}, {{138, 137, 137}, {171, 169, 169}}, {{138, 137, 137}, {171, 169, 169}}, {{138, 137, 137}, {171, 169, 169}}, {{ 138, 137, 137}, {171, 169, 169}}, {{138, 137, 137}, {171, 169, 169}}, {{138, 137, 137}, {171, 169, 169}}, {{138, 137, 137}, {171, 169, 169}}, {{138, 137, 137}, {171, 169, 169}}, {{138, 137, 137}, { 171, 169, 169}}, {{135, 135, 135}, {167, 166, 166}}}, {{0, 0}, {2, 14}}, {0, 255}, ColorFunction -> RGBColor], ImageSize -> {2, 14}, PlotRange -> {{0, 2}, {0, 14}}], ButtonBox[ GraphicsBox[ RasterBox[CompressedData[" 1:eJztlSGSg2AMhTuzfu+wB1qzR+gF9gbIWhwSW4lEV1ZWYyvxSPZb3vAmDdDq zpCZdvKH5CUvfwhfx9+f48fhcPjk983vXy922eU9paqqcRx9HGcZhiE+PZ1O KHVd24KOgt0WFKLQ27ZdJrper0JGcS5CVqs6n89yRpGl73tZBK6kkvv97kCe ChOlLEvbVW2kiYPoxKcYRdwWld00jS2EcFSFMYXCqbOcBJzL5aJcxK7SFEFB GQFn8AWupPUkMRfIJEK53W5d1z2hGVP7yohVbfanWoxAJQTfeywbT1+xK9mi GQGTj8FT0uRAN3Tdjl3SlNANP5WoabIIRP+x52ojLEgXs8fxs7+R1cCXNFH6 SVJhKZwx0+BxBZ7nraGNpBSrEFlA1khgRDcCRg1navIWTeVKPVmliaeaL+c4 tCmcknRHfjtWaS6HNtYmC1wYjGJ+6eKjJcficWgVssz1nGbabFtD682gZaIO MHXqkq/vyW3GFaQXliNuOhbz9lOHU3a6SrhWkCmnXC9pUoPBt1aQpquYrtJt 0f6Pazkd497W1MkSlxierkrrN254iz8oHqS0ByzxGzfOHx2yq9plYSl8l13e Xf4ArlmHrg== "], {{0, 0}, {77, 14}}, {0, 255}, ColorFunction -> RGBColor], ImageSize -> {77, 14}, PlotRange -> {{0, 77}, {0, 14}}], ButtonData -> { URL[ "http://www.wolfram.com/solutions/interactivedeployment/\ licensingterms.html"], None}, ButtonNote -> "http://www.wolfram.com/solutions/interactivedeployment/\ licensingterms.html"]}}, ColumnsEqual -> False, GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}}]], "DockedCell", Background -> GrayLevel[0.494118], CellFrame -> {{0, 0}, {4, 0}}, CellFrameColor -> RGBColor[0.690074, 0.12871, 0.194598], CellMargins -> 0, CellFrameMargins -> {{0, 0}, {0, -1}}, ContextMenu -> None, ComponentwiseContextMenu -> {}, ButtonBoxOptions -> {ButtonFunction :> (FrontEndExecute[{ NotebookLocate[#2]}]& ), Appearance -> None, ButtonFrame -> None, Evaluator -> None, Method -> "Queued"}]}, FEPrivate`If[ FEPrivate`SameQ[ FrontEnd`CurrentValue[ FrontEnd`EvaluationNotebook[], ScreenStyleEnvironment], "SlideShow"], { Inherited}, {}]], Inherited], FrontEndVersion->"7.0 for Microsoft Windows (32-bit) (November 10, 2008)", StyleDefinitions->FrontEnd`FileName[{"Report"}, "AutomatedReport.nb", CharacterEncoding -> "WindowsANSI"] ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[567, 22, 226, 3, 73, "Title"], Cell[796, 27, 1759, 35, 184, "Text"], Cell[CellGroupData[{ Cell[2580, 66, 515, 20, 80, "Section"], Cell[3098, 88, 290, 10, 35, "Text"], Cell[3391, 100, 12882, 545, 146, 10132, 495, "GraphicsData", "PostScript", \ "Text"], Cell[16276, 647, 157, 4, 34, "Text"], Cell[16436, 653, 15203, 646, 183, 11457, 580, "GraphicsData", "PostScript", \ "Text"], Cell[31642, 1301, 1431, 22, 103, "Text"], Cell[CellGroupData[{ Cell[33098, 1327, 4701, 106, 84, "Input"], Cell[37802, 1435, 2676, 54, 486, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[40515, 1494, 258, 6, 37, "Subsection"], Cell[40776, 1502, 631, 17, 81, "Text"], Cell[41410, 1521, 343, 7, 71, "Text"], Cell[41756, 1530, 431, 7, 71, "Text"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[42236, 1543, 405, 15, 50, "Section"], Cell[42644, 1560, 20128, 859, 161, 16105, 789, "GraphicsData", "PostScript", \ "Graphics"], Cell[62775, 2421, 990, 23, 63, "Text"], Cell[CellGroupData[{ Cell[63790, 2448, 258, 6, 37, "Subsection"], Cell[64051, 2456, 651, 19, 78, "Text"], Cell[64705, 2477, 291, 6, 71, "Text"], Cell[64999, 2485, 410, 7, 71, "Text"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[65458, 2498, 268, 5, 49, "Section"], Cell[CellGroupData[{ Cell[65751, 2507, 2237, 62, 155, "Subsubsection"], Cell[CellGroupData[{ Cell[68013, 2573, 4017, 126, 104, "Input"], Cell[72033, 2701, 3383, 75, 256, "Output"] }, Open ]], Cell[75431, 2779, 632, 17, 58, "Text"], Cell[76066, 2798, 528, 10, 71, "Text"], Cell[76597, 2810, 742, 11, 71, "Text"], Cell[77342, 2823, 527, 8, 71, "Text"] }, Closed]] }, Closed]], Cell[CellGroupData[{ Cell[77918, 2837, 225, 4, 49, "Section"], Cell[78146, 2843, 273, 5, 38, "Text"], Cell[CellGroupData[{ Cell[78444, 2852, 1852, 53, 84, "Input"], Cell[80299, 2907, 2090, 44, 212, "Output"] }, Open ]], Cell[82404, 2954, 943, 25, 82, "Text"], Cell[83350, 2981, 380, 8, 71, "Text"], Cell[83733, 2991, 519, 8, 71, "Text"], Cell[84255, 3001, 397, 7, 34, "Text"], Cell[CellGroupData[{ Cell[84677, 3012, 1759, 51, 84, "Input"], Cell[86439, 3065, 2046, 43, 212, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[88522, 3113, 459, 15, 46, "Subsection"], Cell[CellGroupData[{ Cell[89006, 3132, 1757, 52, 84, "Input"], Cell[90766, 3186, 2050, 43, 298, "Output"] }, Open ]], Cell[92831, 3232, 265, 7, 34, "Text"], Cell[93099, 3241, 433, 8, 71, "Text"], Cell[93535, 3251, 562, 8, 41, "Text"], Cell[94100, 3261, 342, 8, 34, "Text"], Cell[94445, 3271, 414, 15, 56, "Text"], Cell[94862, 3288, 117, 2, 34, "Text"], Cell[94982, 3292, 432, 15, 51, "Text"], Cell[95417, 3309, 434, 12, 35, "Text"], Cell[95854, 3323, 867, 24, 102, "Text"] }, Closed]], Cell[CellGroupData[{ Cell[96758, 3352, 162, 3, 45, "Subsection"], Cell[96923, 3357, 61, 1, 34, "Text"], Cell[96987, 3360, 404, 13, 51, "Text"], Cell[97394, 3375, 289, 9, 35, "Text"], Cell[97686, 3386, 404, 13, 51, "Text"], Cell[98093, 3401, 634, 17, 59, "Text"], Cell[CellGroupData[{ Cell[98752, 3422, 1812, 53, 84, "Input"], Cell[100567, 3477, 2106, 45, 314, "Output"] }, Open ]], Cell[102688, 3525, 1188, 29, 83, "Text"], Cell[103879, 3556, 397, 10, 35, "Text"], Cell[CellGroupData[{ Cell[104301, 3570, 2085, 60, 84, "Input"], Cell[106389, 3632, 2176, 46, 300, "Output"] }, Open ]], Cell[108580, 3681, 1077, 27, 83, "Text"], Cell[109660, 3710, 480, 9, 71, "Text"], Cell[110143, 3721, 512, 8, 41, "Text"], Cell[110658, 3731, 459, 7, 71, "Text"] }, Closed]] }, Closed]] }, Open ]] } ] *) (* End of internal cache information *) (* NotebookSignature 5x0SmZWZtGy13AK6BKjSCy7z *)