(************** Content-type: application/mathematica ************** Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 46499, 1077]*) (*NotebookOutlinePosition[ 47190, 1101]*) (* CellTagsIndexPosition[ 47146, 1097]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell[TextData[{ StyleBox["\:7a4d\:5206\:3000", FontColor->RGBColor[0, 0, 1]], Cell[BoxData[ \(\[Integral]\_a\%b f \((x)\) \[DifferentialD]x\)], FontWeight->"Bold", FontColor->RGBColor[0, 0, 1]], StyleBox["\:3000\:306e\:5b9a\:7fa9", FontColor->RGBColor[0, 0, 1]] }], "Subtitle"], Cell[TextData[{ StyleBox["\:9589\:533a\:9593 [a,b] \:3067\:9023\:7d9a\:306a\:95a2\:6570 \ f(x) \:306b\:3064\:3044\:3066\:5b9a\:7a4d\:5206 ", FontSize->16], Cell[BoxData[ \(\[Integral]\_a\%b f \((x)\) \[DifferentialD]x\)], FontSize->16, FontWeight->"Bold", FontColor->RGBColor[0, 0, 1]], " ", StyleBox["\:306f\:4ee5\:4e0b\:306e\:3088\:3046\:306b\:5b9a\:7fa9\:3055\:308c\ \:308b\:ff0e", FontSize->16], "\n", StyleBox["\:ff08\:ff11\:ff09\:9589\:533a\:9593 [a,b]\:3092", FontSize->16], Cell[BoxData[ StyleBox["n", FontWeight->"Bold"]], FontSize->16], StyleBox["\:500b\:306e\:5c0f\:533a\:9593 ", FontSize->16], Cell[BoxData[ \(\([x\_i, x\_\(i + 1\)]\)\)], FontSize->16, FontWeight->"Bold"], StyleBox["\:306b\:5206\:5272\:3059\:308b\:ff0e\n\:ff08\:ff12\:ff09\:4efb\ \:610f\:306e\:70b9 ", FontSize->16], Cell[BoxData[ \(\[Xi]\_i\)], FontSize->16, FontWeight->"Bold"], StyleBox["\:3092\:9078\:3073\:ff0c", FontSize->16], Cell[BoxData[ \(f \((\[Xi]\_i)\)\)], FontSize->16, FontWeight->"Bold"], StyleBox["\:3068", FontSize->16], StyleBox[" ", FontSize->16, FontWeight->"Bold"], Cell[BoxData[ \(x\_\(i + 1\) - x\_i\)], FontSize->16, FontWeight->"Bold"], StyleBox["\:306e\:7a4d\:3092\:8003\:3048\:ff0c\:3055\:3089\:306b\:5404\:5c0f\ \:533a\:9593\:306b\:3064\:3044\:3066\:52a0\:3048\:305f", FontSize->16], StyleBox["\:548c", FontSize->16, FontWeight->"Bold"], StyleBox["\n\n ", FontSize->16], StyleBox[" ", FontSize->16, FontColor->RGBColor[1, 0, 0]], Cell[BoxData[ \(\(\(s\_n\)\(=\)\)\)], FontSize->16, FontWeight->"Bold", FontColor->RGBColor[1, 0, 0]], Cell[BoxData[ \(\[Sum]\+\(i = 0\)\%\(n - 1\)f \((\[Xi]\_i)\)\[Times](\)], FontSize->16, FontWeight->"Bold", FontColor->RGBColor[1, 0, 0]], StyleBox[" ", FontSize->16, FontWeight->"Bold", FontColor->RGBColor[1, 0, 0]], Cell[BoxData[ \(\(\(x\_\(i + 1\) - x\_i\)\()\)\)\)], FontSize->16, FontWeight->"Bold", FontColor->RGBColor[1, 0, 0]], StyleBox["\n\n\:3092\:8003\:3048\:308b\:ff0e", FontSize->16], StyleBox["\:3053\:306e\:3068\:304d\:ff0c", FontSize->16, FontWeight->"Bold"], Cell[BoxData[ \(n\)], FontSize->16, FontWeight->"Bold"], StyleBox[" \:3092\:5927\:304d\:304f\:3057\:3066\:ff0c\:5404\:5c0f\:533a\ \:9593\:306e\:5e45\:304c\:5c0f\:3055\:304f\:306a\:308b\:3088\:3046\:306b\:3057\ \:3066\:3044\:304f\:3068\:ff0c", FontSize->16, FontWeight->"Bold"], StyleBox["\:3069\:3093\:306a\:5206\:5272\:3092\:8003\:3048\:3088\:3046\:3068\ \:ff0c\:70b9 ", FontSize->16, FontWeight->"Bold", FontColor->RGBColor[1, 0, 1], FontVariations->{"Underline"->True}], Cell[BoxData[ \(\[Xi]\_i\)], FontSize->16, FontWeight->"Bold", FontColor->RGBColor[1, 0, 1], FontVariations->{"Underline"->True}], StyleBox["\:3092\:3069\:306e\:3088\:3046\:306b\:9078\:307c\:3046\:3068", FontSize->16, FontWeight->"Bold", FontColor->RGBColor[1, 0, 1], FontVariations->{"Underline"->True}], StyleBox["\:ff0c ", FontSize->16, FontWeight->"Bold"], Cell[BoxData[ \(S\_n\)], FontSize->16, FontWeight->"Bold", FontColor->RGBColor[1, 0, 0]], StyleBox[" \:306e\:5024\:306f\:4e00\:5b9a\:306e\:5024 ", FontSize->16, FontWeight->"Bold"], StyleBox[" \[Alpha] ", FontSize->16, FontWeight->"Bold", FontColor->RGBColor[1, 0, 0]], StyleBox[" \:306b\:8fd1\:3065\:304f\:3053\:3068\:304c\:8a3c\:660e\:3055\ \:308c\:308b\:ff0e", FontSize->16, FontWeight->"Bold"], StyleBox["\:3053\:306e\:5024 ", FontSize->16], StyleBox[" \[Alpha] ", FontSize->16, FontColor->RGBColor[1, 0, 0]], StyleBox["\:3092 ", FontSize->16], Cell[BoxData[ \(\[Integral]\_a\%b f \((x)\) \[DifferentialD]x\)], FontSize->16, FontWeight->"Bold", FontColor->RGBColor[0, 0, 1]], " ", StyleBox["\:3068\:8868\:3059\:ff0e", FontSize->16] }], "Text"], Cell[TextData[{ StyleBox["\:3053\:3053\:3067\:306f", FontSize->16], "\:ff0c", StyleBox["\:9589\:533a\:9593 [0,m] \:3068\:3059\:308b\:ff0e\:305f\:3060\ \:3057\:ff0cm \:306f\:6b63\:306e\:6574\:6570\:ff0e\:5c0f\:533a\:9593\:3092 ", FontSize->16], Cell[BoxData[ \(\([0, 1\/n]\)\)], FontSize->16], ",", StyleBox[" ", FontSize->16], Cell[BoxData[ \(\([1\/n, 2\/n]\)\)], FontSize->16], ",", StyleBox[" ", FontSize->16], Cell[BoxData[ \(\([2\/n, 3\/n]\)\)], FontSize->16], " , ..., ", StyleBox[" ", FontSize->16], Cell[BoxData[ \(\([\(mn - 1\)\/n, mn\/n]\)\)], FontSize->16], StyleBox[" \:306e\:3088\:3046\:306b\:5206\:5272\:3057\:ff0c\:5c0f\:533a\ \:9593 ", FontSize->16], Cell[BoxData[ \(\([i\/n, \(i + 1\)\/n]\)\)], FontSize->16], "\:306b\:304a\:3051\:308b", StyleBox["\:70b9 ", FontSize->16], StyleBox[" ", FontSize->16, FontWeight->"Bold"], Cell[BoxData[ \(\(\(\[Xi]\_i\)\(\ \)\)\)], FontSize->16, FontWeight->"Bold"], StyleBox["\:3092 ", FontSize->16], Cell[BoxData[ RowBox[{\(\[Xi]\_i\), "=", RowBox[{\(i\/n\), Cell[""]}]}]], FontSize->16, FontWeight->"Bold"], StyleBox["\:3068\:3057\:3066\:9078\:3073\:ff0c\:548c", FontSize->16], "\n\n\:3000\:3000\:3000", StyleBox[" ", FontSize->16, FontWeight->"Bold", FontColor->RGBColor[1, 0, 0]], Cell[BoxData[ \(\(\(s\_n\)\(=\)\)\)], FontSize->16, FontWeight->"Bold", FontColor->RGBColor[1, 0, 0]], Cell[BoxData[ \(\[Sum]\+\(i = 0\)\%\(mn - 1\)f \((i\/n)\)\[Times]1\/n\)], FontSize->16, FontWeight->"Bold", FontColor->RGBColor[1, 0, 0]], "\n\n", StyleBox["\:3092\:8003\:3048\:308b\:ff0e", FontSize->16], StyleBox["\:4f8b\:3048\:3070\:ff0c", FontSize->16, FontWeight->"Bold"], Cell[BoxData[ RowBox[{\(f \((x)\)\), "=", RowBox[{"2", "x", Cell[""]}]}]], FontSize->16, FontWeight->"Bold"], StyleBox[" \:3068\:3059\:308b\:3068\:304d", FontSize->16, FontWeight->"Bold"], StyleBox["\:ff0c", FontWeight->"Bold"], Cell[BoxData[ \(n = 5\)], FontSize->16, FontWeight->"Bold"], StyleBox[" \:3068\:3057", FontSize->16, FontWeight->"Bold"], StyleBox["\:ff0c", FontWeight->"Bold"], StyleBox["\:4e0b\:56f3\:306e\:3088\:3046\:306b\:7a4d ", FontSize->16, FontWeight->"Bold"], Cell[BoxData[ \(f \((i\/5)\)\[Times]1\/5\)], FontSize->16, FontWeight->"Bold"], StyleBox[" ( i = 0, 1, ..., 9) \:3092\:533a\:9593 [0,2] \:3067\:52a0\:3048\ \:305f", FontSize->16, FontWeight->"Bold"], StyleBox[" ", FontSize->16, FontWeight->"Bold", FontColor->RGBColor[1, 0, 0]], Cell[BoxData[ \(S\_5\)], FontSize->16, FontWeight->"Bold", FontColor->RGBColor[1, 0, 0]], StyleBox[" \:306f\:9577\:65b9\:5f62\:306e\:9762\:7a4d\:306e\:7dcf\:548c\ \:306b\:306a\:308b\:ff0e", FontSize->16, FontWeight->"Bold"] }], "Text"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: 1.90476 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.0238095 0.47619 0 0.47619 [ [.2619 -0.0125 -9 -9 ] [.2619 -0.0125 9 0 ] [.5 -0.0125 -3 -9 ] [.5 -0.0125 3 0 ] [.7381 -0.0125 -9 -9 ] [.7381 -0.0125 9 0 ] [.97619 -0.0125 -3 -9 ] [.97619 -0.0125 3 0 ] [.01131 .2381 -18 -4.5 ] [.01131 .2381 0 4.5 ] [.01131 .47619 -6 -4.5 ] [.01131 .47619 0 4.5 ] [.01131 .71429 -18 -4.5 ] [.01131 .71429 0 4.5 ] [.01131 .95238 -6 -4.5 ] [.01131 .95238 0 4.5 ] [.01131 1.19048 -18 -4.5 ] [.01131 1.19048 0 4.5 ] [.01131 1.42857 -6 -4.5 ] [.01131 1.42857 0 4.5 ] [.01131 1.66667 -18 -4.5 ] [.01131 1.66667 0 4.5 ] [.01131 1.90476 -6 -4.5 ] [.01131 1.90476 0 4.5 ] [ 0 0 0 0 ] [ 1 1.90476 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash .2619 0 m .2619 .00625 L s [(0.5)] .2619 -0.0125 0 1 Mshowa .5 0 m .5 .00625 L s [(1)] .5 -0.0125 0 1 Mshowa .7381 0 m .7381 .00625 L s [(1.5)] .7381 -0.0125 0 1 Mshowa .97619 0 m .97619 .00625 L s [(2)] .97619 -0.0125 0 1 Mshowa .125 Mabswid .07143 0 m .07143 .00375 L s .11905 0 m .11905 .00375 L s .16667 0 m .16667 .00375 L s .21429 0 m .21429 .00375 L s .30952 0 m .30952 .00375 L s .35714 0 m .35714 .00375 L s .40476 0 m .40476 .00375 L s .45238 0 m .45238 .00375 L s .54762 0 m .54762 .00375 L s .59524 0 m .59524 .00375 L s .64286 0 m .64286 .00375 L s .69048 0 m .69048 .00375 L s .78571 0 m .78571 .00375 L s .83333 0 m .83333 .00375 L s .88095 0 m .88095 .00375 L s .92857 0 m .92857 .00375 L s .25 Mabswid 0 0 m 1 0 L s .02381 .2381 m .03006 .2381 L s [(0.5)] .01131 .2381 1 0 Mshowa .02381 .47619 m .03006 .47619 L s [(1)] .01131 .47619 1 0 Mshowa .02381 .71429 m .03006 .71429 L s [(1.5)] .01131 .71429 1 0 Mshowa .02381 .95238 m .03006 .95238 L s [(2)] .01131 .95238 1 0 Mshowa .02381 1.19048 m .03006 1.19048 L s [(2.5)] .01131 1.19048 1 0 Mshowa .02381 1.42857 m .03006 1.42857 L s [(3)] .01131 1.42857 1 0 Mshowa .02381 1.66667 m .03006 1.66667 L s [(3.5)] .01131 1.66667 1 0 Mshowa .02381 1.90476 m .03006 1.90476 L s [(4)] .01131 1.90476 1 0 Mshowa .125 Mabswid .02381 .04762 m .02756 .04762 L s .02381 .09524 m .02756 .09524 L s .02381 .14286 m .02756 .14286 L s .02381 .19048 m .02756 .19048 L s .02381 .28571 m .02756 .28571 L s .02381 .33333 m .02756 .33333 L s .02381 .38095 m .02756 .38095 L s .02381 .42857 m .02756 .42857 L s .02381 .52381 m .02756 .52381 L s .02381 .57143 m .02756 .57143 L s .02381 .61905 m .02756 .61905 L s .02381 .66667 m .02756 .66667 L s .02381 .7619 m .02756 .7619 L s .02381 .80952 m .02756 .80952 L s .02381 .85714 m .02756 .85714 L s .02381 .90476 m .02756 .90476 L s .02381 1 m .02756 1 L s .02381 1.04762 m .02756 1.04762 L s .02381 1.09524 m .02756 1.09524 L s .02381 1.14286 m .02756 1.14286 L s .02381 1.2381 m .02756 1.2381 L s .02381 1.28571 m .02756 1.28571 L s .02381 1.33333 m .02756 1.33333 L s .02381 1.38095 m .02756 1.38095 L s .02381 1.47619 m .02756 1.47619 L s .02381 1.52381 m .02756 1.52381 L s .02381 1.57143 m .02756 1.57143 L s .02381 1.61905 m .02756 1.61905 L s .02381 1.71429 m .02756 1.71429 L s .02381 1.7619 m .02756 1.7619 L s .02381 1.80952 m .02756 1.80952 L s .02381 1.85714 m .02756 1.85714 L s .25 Mabswid .02381 0 m .02381 1.90476 L s 0 0 m 1 0 L 1 1.90476 L 0 1.90476 L closepath clip newpath .5 Mabswid .02381 0 m .06244 .07727 L .10458 .16154 L .14415 .24068 L .18221 .3168 L .22272 .39781 L .26171 .4758 L .30316 .55869 L .34309 .63855 L .3815 .71538 L .42237 .79711 L .46172 .87581 L .49955 .95148 L .53984 1.03206 L .57861 1.1096 L .61984 1.19205 L .65954 1.27147 L .69774 1.34785 L .73838 1.42915 L .77751 1.50741 L .81909 1.59057 L .85916 1.6707 L .89771 1.7478 L .93871 1.82981 L .97619 1.90476 L s .2 .2 .6 r .11905 0 m .11905 .19048 L .21429 .19048 L .21429 0 L F .21429 0 m .21429 .38095 L .30952 .38095 L .30952 0 L F .30952 0 m .30952 .57143 L .40476 .57143 L .40476 0 L F .40476 0 m .40476 .7619 L .5 .7619 L .5 0 L F .5 0 m .5 .95238 L .59524 .95238 L .59524 0 L F .59524 0 m .59524 1.14286 L .69048 1.14286 L .69048 0 L F .69048 0 m .69048 1.33333 L .78571 1.33333 L .78571 0 L F .78571 0 m .78571 1.52381 L .88095 1.52381 L .88095 0 L F .88095 0 m .88095 1.71429 L .97619 1.71429 L .97619 0 L F % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{230, 438.063}, ImageMargins->{{69, 0}, {0, 34.3125}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHgH0oooo003V0?ooo`00iP3oool00>H0oooo003V0?ooo`00iP3oool00>H0oooo003V0?ooo`00@03o ool2@00000@0oooo0T0000040?ooo`900000:P3oool5@00002P0oooo1D0000020?ooo`900000103o ool2@00002T0oooo140000050?ooo`00?`3oool014000000oooo0?oood0000080?ooo`04@000003o ool0oooo@00002/0oooo00=000000?ooo`3oool0:P3oool00d000000oooo0?ooo`070?ooo`04@000 003oool0oooo@00002P0oooo00=000000?ooo`3oool01P3oool003l0oooo00A000000?ooo`3ooom0 00002`3oool00d000000oooo0?ooo`0Y0?ooo`03@000003oool0oooo02X0oooo00=000000?ooo`3o ool02P3oool00d000000oooo0?ooo`0W0?ooo`03@000003oool0oooo00D0oooo000o0?ooo`04@000 003oool0oooo@00000T0oooo0T00000/0?ooo`03@000003oool0oooo02X0oooo00=000000?ooo`3o ool0203oool2@00002/0oooo00=000000?ooo`3oool0103oool003l0oooo00A000000?ooo`3ooom0 00002@3oool00d000000oooo0?ooo`0[0?ooo`03@000003oool0oooo02X0oooo00=000000?ooo`3o ool0203oool00d000000oooo0?ooo`0X0?ooo`04@000003oool0oooo@00000D0oooo00100?ooo`90 00002P3oool3@00002X0oooo0T00000[0?ooo`9000002P3oool3@00002T0oooo0T0000060?ooo`00 iP3oool00>H0oooo003V0?ooo`00iP3oool000l0ooooeP000001@0000000503oool00`000000oooo 0?ooo`070?ooo`03@000003oool0oooo00L0oooo]`0cI1`3oool001@0oooo00<000000?ooo`00 00004@3ooong03I1`3oool001@0oooo00D000000?ooo`3oool0 oooo0000000?0?oookL0I1`3oool001@0oooo00D000000?ooo`3oool0oooo0000000?0?oookL0 I1`3oool001@0oooo00<00000@000003oool00P3oool00`000000oooo0?ooo`0<0?oookL0I 1`3oool001@0oooo00<000000?ooo`3oool00P3oool00`000000oooo0?ooo`0<0?oookL0I1`3o ool001@0oooo00<000000?ooo`3oool00`3oool00`000000oooo0?ooo`0;0?oookL0I1`3oool0 01@0oooo00<000000?ooo`3oool00`3oool00`000000oooo0?ooo`0;0?oookL0I1`3oool001@0 oooo00<000000?ooo`3oool0103oool00`000000oooo0?ooo`0:0?oookL0I1`3oool001@0oooo 00<000000?ooo`3oool0103oool00`000000oooo0?ooo`0:0?oookL0I1`3oool001@0oooo00<0 00000?ooo`3oool01@3oool00`000000oooo0?ooo`090?oookL0I1`3oool001@0oooo00<00000 0?ooo`3oool01@3oool00`000000oooo0?ooo`090?oookL0I1`3oool001@0oooo00<000000?oo o`3oool01P3oool00`000000oooo0?ooo`080?oookL0I1`3oool001@0oooo00<000000?ooo`3o ool01P3oool00`000000oooo0?ooo`080?oookL0I1`3oool001@0oooo00<000000?ooo`3oool0 1`3oool00`000000oooo0?ooo`070?oookL0I1`3oool001@0oooo00<00000@000003oool01`3o ool00`000000oooo0?ooo`070?oookL0I1`3oool001@0oooo00<000000?ooo`3oool0203oool0 0`000000oooo0?ooo`060?oookL0I1`3oool001@0oooo00<000000?ooo`3oool0203oool00`00 0000oooo0?ooo`060?oookL0I1`3oool001@0oooo00<000000?ooo`3oool02@3oool00`000000 oooo0?ooo`050?oookL0I1`3oool001@0oooo00<000000?ooo`3oool02@3oool00`000000oooo 0?ooo`050?oookL0I1`3oool001@0oooo00<000000?ooo`3oool02P3oool00`000000oooo0?oo o`040?oookL0I1`3oool001@0oooo00<000000?ooo`3oool02P3oool00`000000oooo0?ooo`04 0?oookL0I1`3oool001@0oooo00<000000?ooo`3oool02`3oool00`000000oooo0?ooo`030?oo okL0I1`3oool001@0oooo00<000000?ooo`3oool02`3oool00`000000oooo0?ooo`030?oookL0 I1`3oool001@0oooo00<000000?ooo`3oool0303oool00`000000oooo0?ooo`020?oookL0I 1`3oool001@0oooo00<00000@000003oool0303oool00`000000oooo0?ooo`020?oookL0I1`3o ool001@0oooo00<000000?ooo`3oool03@3oool010000000oooo0?ooo`3ooong030?ooo`030000003oool0oooo0;L0I1`3oool001@0oooo00<000000?oo o`3oool03P3oool00`000000oooo0?ooo`2g03I0;H0I1`3oool001@0oooo00<000000?ooo`3oool0403oool00`000000I03I1`3oool001@0oooo00<00000@000003o ool04@3ooong03I1`3oool000050?oood00 0000oooo0?oood0000002@3oool2@00000@0oooo00<000000?ooo`3oool05`3oool00`000000oooo 0?ooo`0<0?oooj80I1`3oool000050?oood000000oooo0?oood0000002@3oool00d000000oooo 0?ooo`030?ooo`030000003oool0oooo01P0oooo00<000000?ooo`3oool02`3ooonR03I1`3oool001@0oooo00<000000?ooo`3oool06@3oool00`000000oooo0?ooo`0: 0?oooj80I1`3oool001@0oooo00<000000?ooo`3oool06@3oool00`000000oooo0?ooo`0:0?oo oj80I1`3oool001@0oooo00<000000?ooo`3oool06P3oool00`000000oooo0?ooo`090?oooj80 I1`3oool001@0oooo00<000000?ooo`3oool06P3oool00`000000oooo0?ooo`090?oooj80I 1`3oool001@0oooo00<000000?ooo`3oool06`3oool00`000000oooo0?ooo`080?oooj80I1`3o ool001@0oooo00<000000?ooo`3oool06`3oool00`000000oooo0?ooo`080?oooj80I1`3oool0 01@0oooo00<00000@000003oool0703oool00`000000oooo0?ooo`070?oooj80I1`3oool001@0 oooo00<000000?ooo`3oool0703oool00`000000oooo0?ooo`070?oooj80I1`3oool001@0oooo 00<000000?ooo`3oool07@3oool00`000000oooo0?ooo`060?oooj80I1`3oool001@0oooo00<0 00000?ooo`3oool07@3oool00`000000oooo0?ooo`060?oooj80I1`3oool001@0oooo00<00000 0?ooo`3oool07P3oool00`000000oooo0?ooo`050?oooj80I1`3oool001@0oooo00<000000?oo o`3oool07P3oool00`000000oooo0?ooo`050?oooj80I1`3oool001@0oooo00<000000?ooo`3o ool07`3oool00`000000oooo0?ooo`040?oooj80I1`3oool001@0oooo00<000000?ooo`3oool0 7`3oool00`000000oooo0?ooo`040?oooj80I1`3oool001@0oooo00<000000?ooo`3oool0803o ool00`000000oooo0?ooo`030?oooj80I1`3oool001@0oooo00<000000?ooo`3oool0803oool0 0`000000oooo0?ooo`030?oooj80I1`3oool001@0oooo00<00000@000003oool08@3oool00`00 0000oooo0?ooo`020?oooj80I1`3oool001@0oooo00<000000?ooo`3oool08@3oool00`000000 oooo0?ooo`020?oooj80I1`3oool001@0oooo00<000000?ooo`3oool08P3oool010000000oooo 0?ooo`3ooonR03I 1`3oool001@0oooo00<000000?ooo`3oool08`3oool00`000000oooo0?ooo`2R03I0:40I1`3oool001@0oooo00<000000?ooo`3o ool09@3oool00`000000I03I1`3o ool001@0oooo00<00000@000003oool09P3ooonR03030303030303030303 03030303030303030303I1`3oool000h0oooo0T0000040?ooo`030000003oool0oooo0380oooo00<000000?ooo`3oool0 1@3ooon>0303 030303030303I1`3oool001@0oooo00<000000?oo o`3oool0=`3oool00`000000oooo0?ooo`2>03I08d0I1`3oool001@0oooo00<000000?ooo`3oool0>03oool00`000000oooo03I08`0I1`3oool001@0 oooo00<000000?ooo`3oool0>@3oool00`000000I03I1`3oool000<0oooo00=000000?ooo`3oool0 1`3oool014000000oooo0?oood0000030?ooo`030000003oool0oooo04T0oooo00<000000?ooo`3o ool00P3ooomj03I1`3oool000<0 oooo00=000000?ooo`3oool0203oool2@00000@0oooo00<000000?ooo`3oool0BP3oool010000000 oooo0?ooo`3ooomj03I1`3oool00080oooo 0T00000:0?ooo`=000000`3oool00`000000oooo0?ooo`1;0?ooo`030000003oool0oooo07X0I 1`3oool001@0oooo00<000000?ooo`3oool0C03oool00`000000oooo03I07P0I1`3oool001@0oooo00<000000?ooo`3o ool0C@3oool00`000000I030?ooogX0I1`3oool001@0oooo00<00000 @000003oool0CP3ooomj03I1`3oool001@0oooo00<000000?oo o`3oool0H03oool00`000000oooo0?ooo`1U03I06@0I1`3oool001@0oooo00<000000?ooo`3oool0H@3oool00`000000oooo03I06<0I1`3oool000d0 oooo140000030?ooo`030000003oool0oooo06<0ooooI@0cI1`3oool0 00d0oooo00A000000?ooo`3ooom000000`3oool00`000000oooo0?ooo`1T0?ooo`030000003oool0 oooo0100ooooD@0cI1`3oool001@0oooo00<000000?ooo`3oool0I@3oool00`000000 oooo0?ooo`0?0?oooe40I1`3oool001@0oooo00<000000?ooo`3oool0IP3oool00`000000oooo 0?ooo`0>0?oooe40I1`3oool001@0oooo00<000000?ooo`3oool0IP3oool00`000000oooo0?oo o`0>0?oooe40I1`3oool001@0oooo00<000000?ooo`3oool0I`3oool00`000000oooo0?ooo`0= 0?oooe40I1`3oool001@0oooo00<000000?ooo`3oool0I`3oool00`000000oooo0?ooo`0=0?oo oe40I1`3oool001@0oooo00<000000?ooo`3oool0I`3oool00`000000oooo0?ooo`0=0?oooe40 I1`3oool001@0oooo00<00000@000003oool0J03oool00`000000oooo0?ooo`0<0?oooe40I 1`3oool001@0oooo00<000000?ooo`3oool0J03oool00`000000oooo0?ooo`0<0?oooe40I1`3o ool001@0oooo00<000000?ooo`3oool0J@3oool00`000000oooo0?ooo`0;0?oooe40I1`3oool0 01@0oooo00<000000?ooo`3oool0J@3oool00`000000oooo0?ooo`0;0?oooe40I1`3oool001@0 oooo00<000000?ooo`3oool0JP3oool00`000000oooo0?ooo`0:0?oooe40I1`3oool001@0oooo 00<000000?ooo`3oool0JP3oool00`000000oooo0?ooo`0:0?oooe40I1`3oool001@0oooo00<0 00000?ooo`3oool0J`3oool00`000000oooo0?ooo`090?oooe40I1`3oool001@0oooo00<00000 0?ooo`3oool0J`3oool00`000000oooo0?ooo`090?oooe40I1`3oool001@0oooo00<000000?oo o`3oool0K03oool00`000000oooo0?ooo`080?oooe40I1`3oool001@0oooo00<000000?ooo`3o ool0K03oool00`000000oooo0?ooo`080?oooe40I1`3oool001@0oooo00<00000@000003oool0 K@3oool00`000000oooo0?ooo`070?oooe40I1`3oool001@0oooo00<000000?ooo`3oool0K@3o ool00`000000oooo0?ooo`070?oooe40I1`3oool001@0oooo00<000000?ooo`3oool0KP3oool0 0`000000oooo0?ooo`060?oooe40I1`3oool001@0oooo00<000000?ooo`3oool0KP3oool00`00 0000oooo0?ooo`060?oooe40I1`3oool001@0oooo00<000000?ooo`3oool0K`3oool00`000000 oooo0?ooo`050?oooe40I1`3oool001@0oooo00<000000?ooo`3oool0L03oool00`000000oooo 0?ooo`040?oooe40I1`3oool001@0oooo00<000000?ooo`3oool0L03oool00`000000oooo0?oo o`040?oooe40I1`3oool001@0oooo00<000000?ooo`3oool0L@3oool00`000000oooo0?ooo`03 0?oooe40I1`3oool001@0oooo00<000000?ooo`3oool0L@3oool00`000000oooo0?ooo`030?oo oe40I1`3oool001@0oooo00<000000?ooo`3oool0LP3oool00`000000oooo0?ooo`020?oooe40 I1`3oool001@0oooo00<00000@000003oool0LP3oool00`000000oooo0?ooo`020?oooe40I 1`3oool001@0oooo00<000000?ooo`3oool0L`3oool010000000oooo0?ooo`3ooomA03I1`3oool001@0oooo00<00000 0?ooo`3oool0M03oool00`000000oooo0?ooo`1A03I0500I1`3oool001@0oooo00<000000?ooo`3oool0MP3oool00`000000I 03I1`3oool001@0oooo00<00000@000 003oool0M`3ooomA03I1`3oool0 0080oooo0T00000:0?ooo`=000000`3oool00`000000oooo0?ooo`1m0?ooo`030000003oool0oooo 00/0oooo?@0cI1`3oool001@0oooo00<000000?ooo`3oool0Q`3oool010000000oooo0?oo o`3ooolm03I1`3oool0 01@0oooo00<000000?ooo`3oool0R@3oool00`000000oooo03I03/0I1`3oool001@0oooo00<000000?ooo`3oool0RP3o ool00`000000I03I1`3oool001@0oooo00<00000@000003o ool0R`3ooolm030?ooo`900000103oool00`000000oooo0?ooo`2E 0?ooo`030000003oool0oooo00P0oooo:00cI1`3oool000h0oooo0T0000040?ooo`03 0000003oool0oooo09L0oooo00<000000?ooo`3oool01P3ooolX03I1`3oool001@0oooo00<000000?ooo`3oool0W@3oool00`000000oooo0?ooo`0X03I02L0I1`3oool001@0oooo00<0 00000?ooo`3oool0WP3oool00`000000oooo03I02H0I1`3oool001@0oooo00<000000?ooo`3oool0X03ooolX03I1`3oool000<0oooo00=000000?ooo`3oool02P3oool01400 0000oooo0?ooo`3oool200000003@000003oool0oooo0:d0oooo00<000000?ooo`3oool00P3ooolD 03I1`3oool00080oooo0T00000:0?ooo`=000000`3oool00`000000oooo0?ooo`2`0?oo o`040000003oool0oooo0?oooa@0I1`3oool001@0oooo00<000000?ooo`3oool0/@3oool00`00 0000oooo0?ooo`0D03I01<0I 1`3oool001@0oooo00<000000?ooo`3oool0/P3oool00`000000oooo03I1`3oool001@0oooo00<00000@000003oool0]03ooolD030?ooo`00503oool00`000000oooo 0?ooo`2n0?ooo`030000003oool0oooo00h0oooo000D0?ooo`030000003oool0oooo0;l0oooo00<0 00000?ooo`3oool03@3oool001@0oooo00<000000?ooo`3oool0_`3oool00`000000oooo0?ooo`0= 0?ooo`00503oool00`000000oooo0?ooo`300?ooo`030000003oool0oooo00`0oooo000D0?ooo`03 0000003oool0oooo0<00oooo00<000000?ooo`3oool0303oool001@0oooo00<000000?ooo`3oool0 `@3oool00`000000oooo0?ooo`0;0?ooo`00503oool00`000000oooo0?ooo`310?ooo`030000003o ool0oooo00/0oooo000D0?ooo`030000003oool0oooo0<80oooo00<000000?ooo`3oool02P3oool0 01@0oooo00<000000?ooo`3oool0`P3oool00`000000oooo0?ooo`0:0?ooo`00503oool00`000000 oooo0?ooo`330?ooo`030000003oool0oooo00T0oooo000D0?ooo`03000004000000oooo0<<0oooo 00<000000?ooo`3oool02@3oool001@0oooo00<000000?ooo`3oool0a03oool00`000000oooo0?oo o`080?ooo`00503oool00`000000oooo0?ooo`340?ooo`030000003oool0oooo00P0oooo000D0?oo o`030000003oool0oooo0H0oooo003V0?ooo`00iP3oool00>H0oooo003V0?ooo`00iP3oool00>H0oooo0000\ \>"], ImageRangeCache->{{{0, 229}, {437.063, 0}} -> {-0.203382, -0.185646, \ 0.00984015, 0.00984015}}] }, Open ]] }, FrontEndVersion->"4.1 for Microsoft Windows", ScreenRectangle->{{0, 1024}, {0, 695}}, WindowSize->{740, 537}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, CellLabelAutoDelete->True, Magnification->1.25 ] (******************************************************************* Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. *******************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1727, 52, 305, 9, 88, "Subtitle"], Cell[2035, 63, 4093, 143, 343, "Text"], Cell[6131, 208, 3014, 117, 259, "Text"], Cell[9148, 327, 37335, 747, 601, 4534, 338, "GraphicsData", "PostScript", \ "Graphics"] }, Open ]] } ] *) (******************************************************************* End of Mathematica Notebook file. *******************************************************************)