三角関数の積分について

Plot[Sin[3x], {x, -π, π}, PlotStyle→Hue[0.6]]

[Graphics:HTMLFiles/16(3)-3_2.gif]

-Graphics -

Plot[Cos[5x], {x, -π, π}, PlotStyle→Hue[0.6]]

[Graphics:HTMLFiles/16(3)-3_5.gif]

-Graphics -

sin kx は奇関数で cos lx  は遇関数(k,l は 正の整数)   よって
         
f(x)=sin kx  cos lx は奇関数
         i.e.
f(-x)=-f(x) で,

Plot[Sin[3x] * Cos[5x], {x, -π, π}, PlotStyle→Hue[0.]]

[Graphics:HTMLFiles/16(3)-3_8.gif]

-Graphics -

  積を和に直す公式

                 
sin α  sin β=-1/2(cos(α+β)-cos(α-β))
                  
cos α  cos β=1/2(cos(α+β)+cos(α-β))
        
         
より k≠l ならば,
         
         
∫_ (-π)^πsin kx sin lxdx=-1/2[1/(k + l)sin(k+l)x-1/(k - l)sin(k-l)x] _ (-π) ^π=0
         
           同様に
         
        
∫_ (-π)^πcos kx cos lx dx=0
         
         
k=l ならば、cos 0 =1 だから
                
         
∫_ (-π)^πsin kx sin kxdx=∫_ (-π)^πcos kx cos kx=π
         

Plot[Sin[2x] * Sin[6x], {x, -π, π}, PlotStyle→Hue[0.]]

[Graphics:HTMLFiles/16(3)-3_22.gif]

-Graphics -

Plot[Sin[2x] * Sin[2x], {x, -π, π}, PlotStyle→Hue[0.]]

[Graphics:HTMLFiles/16(3)-3_25.gif]

-Graphics -

Plot[Cos[2x] * Cos[2x], {x, -π, π}, PlotStyle→Hue[0.]]

[Graphics:HTMLFiles/16(3)-3_28.gif]

-Graphics -


Created by Mathematica  (April 11, 2006) Valid XHTML 1.1!